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Maximum length sequence (MLS) measurement of system impulse responses offers a potential
enhancement in error immunity over periodic impulse testing, although care must be exercised in
setting the MLS excitation amplitude in order to realise this potential. The effects of nonlinearity in
MLS measurement are studied, in particular the way in which impulse response errors due to
nonlinearity are distributed across the measurement period. The consequences of such errors in
cumulative spectral display plots are also investigated. Finally inverse-repeat sequences (IRS) are
shown to have complete immunity to even-order nonlinearity while maintaining many of the
advantages of MLS.

0 INTRODUCTION

Perhaps the most fundamental evaluation of an audio system is the determination of the linear transfer
function, defined by the impulse response (IR) in the time domain from which the frequency response can
be calculated. Some applications require highly accurate linear transfer function measurement, for
example equalisation of loudspeakers in the digital domain where measurement accuracy must match
equalisation performance (i.e. better than + 0.5 dB across wide regions of the audio spectrum - see for
example [1]). Another application that requires highly accurate linear transfer function measurement is a
technique proposed by the authors to measure low level errors within audio systems [2].

There are three established methods of linear transfer function measurement - periodic impulse excitation
(PIE), maximum length sequences (MLS), and time delay spectrometry (TDS). PIE reveals the periodic
impulse response (PIR) of the device under test (DUT) directly by applying a periodic short duration
impulse to the DUT and measuring the output [3]. The main problem encountered in PIE is poor noise
immunity due to low excitation signal energy; this drawback can be overcome to some degree by
averaging several measurements. Alternatively an MLS can be used, which, compared to a periodic
impulse of similar repetition rate, has a much higher excitation energy for the same peak output (i.e. a
lower crest factor). An MLS is a pseudo-random binary sequence which yields a unit impulse upon
circular autocorrelation and this property allows the PIR of a test system to be obtained by applying an
MLS to the DUT and cross-correlating the system output with the input. An excellent introduction to MLS
techniques is provided by Rife and Vanderkooy [4]. PIE and MLS initially reveal the transfer function in the
time domain while TDS methods yield transfer function information as a complex frequency response
(which can of course be converted to the time-domain by using the inverse Fourier transform). TDS
techniques utilise swept sine waves or "chirps" which are input to the DUT and recover the complex
frequency response of the test system after hardware or software processing [5]. Both TDS and MLS offer
an increase in noise and distortion immunity over PIE. However, it can be shown that in achieving a
similar frequency resolution to that available from MLS, a typical TDS implementation will take
considerably longer to execute [4], [5], [6]. The additional disadvantage that TDS suffers in terms of
hardware and software complexity [7] also helps to explain the growing popularity of MLS [8], [9].

Noise and distortion present in any practical measurement environment reduces the accuracy of linear
transfer function measurement. A simulated example of the effects that nonlinearity can have upon
impulse measurement is shown in Fig. 1. The true magnitude response in the frequency-domain [Fig.
1(a)] of a 1 kHz lowpass FIR filter with less than 0.001 dB pass-band ripple can be compared against the
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MLS-derived magnitude response of the same filter in Fig. 1(b), where the measurement has been
corrupted by gross second-order nonlinearity. Clearly the distortion has caused the recovered transfer
function to appear much more ragged over the filter's pass-band than its linear specification would
suggest.
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Fig. 1. (a) Magnitude response of 1 kHz lowpass FIR filter. (b) MLS-
derived magnitude response of same filter where measurement has
been corrupted by gross second-order nonlinearity.

This paper investigates by simulation the effects that nonlinearity can have upon MLS measurement. In
particular we examine the way in which errors due to nonlinearity are spread across the period of the
recovered impulse response, and the consequences of such distributions for increasing distortion
immunity by truncating the impulse response. A comparison of overall (noise and distortion) error
immunity between MLS and PIE techniques is followed by an assessment of the suitability of inverse
repeat sequences (IRS) for linear transfer function measurement.

1 DETERMINING DISTORTION IMMUNITY BY SIMULATION

Any system with weak (i.e. non-overloading) nonlinearity can be modelled in the frequency domain by the
nonlinear transfer function shown in Fig. 2(a) [4]. This includes a linear stage H(f) and nonlinear stages
H(fi, ©), H(fi, f, f;) etc., which represent different distortion orders. When a multitone signal is input to the
model, harmonic and intermodulation error products will corrupt the output signal. Nonlinearity can also be
represented in the time-domain as a distributed model [Fig. 2(b)], where distortion polynomials dr appear
in parallel with linear filters hn,,. Although the distributed time-domain model is capable of modelling
complex nonlinearities, we require a simpler model for simulation. The nonlinear model used throughout
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this paper is similar to that used by Rife and Vanderkooy in a previous study of distortion in MLS
measurements [4], consisting of a filter h(n) followed by a nonlinearity df } [Fig. 2(c)]. For most of the
simulations presented in this paper the nonlinearity is memoryless, i.e. the error sequence output from the
nonlinear stage depends solely upon its instantaneous input, and the characteristics of the nonlinearity are
thus independent of frequency. Despite the simplicity of this model, it is a fairly good representation of
many physical nonlinear processes. For example a signal applied to a loudspeaker will typically pass
through a crossover filter circuit before reaching the drive unit, which itself will tend to limit at its “output’ as
excursion limits are approached. Furthermore a practical MLS measurement system will employ some
lowpass filtering before the MLS is applied to the DUT in order to minimise slew-related artifacts in the
recovered impulse response [10], [11]. In fact, prefiltering the MLS or PIE excitation is a necessary
condition that must be met if the nonlinearity is to change the shape of the recovered impulse response. If
unfiltered MLS or PIE signals are input to a memoryless nonlinearity then the binary excitation will merely
result in a DC offset error in the recovered impulse response for even-order nonlinearity or a pure gain
change error for odd-order nonlinearity.
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Fig. 2. Nonlinear system modelling. (a) Frequency-domain model. (b)
Distributed time-domain model. (c) Lumped time-domain model.
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Fig. 3. 1 kHz FIR lowpass filter. (a) Time-domain impulse
response h(n). (b) Frequency-domain magnitude response.

We will now describe the general simulation process used to determine distortion immunity in impulse
response measurements. A periodic driving signal x(n) (either a PIE or an MLS) is convolved with a
known linear impulse response h(n) over a measurement period L of 2047 samples. Unless otherwise
indicated, h(n) is a 1 kHz lowpass FIR filter, the first 256 samples of which are plotted in the time domain
in Fig. 3(a). Noting that the sampling frequency is set to 44.1 kHz, the frequency-domain magnitude
response of the filter is illustrated in Fig. 3(b). If h(n) is non zero for a time less than the period of the
driving signal, then time aliasing in the convolution operation is avoided and just one period is required in
the simulations to accurately describe the periodic system behaviour. The filtered driving signal x(n) is
distorted by a known polynomial d{ }, and after appropriate postprocessing has extracted the distorted
impulse response ho(n), the error component e(n) can be calculated by subtracting the known h(n) from
ho(n). The simulation process therefore allows us to examine the impulse error sequence e(n) associated
with a particular nonlinearity d{ }. Summarising the general simulation procedure,

xf() () (n)
(

(1)
h(n) = P[y )
e(n) = hy(n)-hin)
where O represents convolution;
y(n) is the distorted output driving signal;
Pl represents the post-processing operation required to yield an impulse

response from the output driving signal.
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In general a memoryless -order nonlinearity d{ } can be written:

d{xi(n} = Aq {Xf—(”)} 2)

Xref

where Aq4 sets the amplitude of the nonlinearity and X is a reference scaling level. We must set xrs such
that a valid comparison can be made between PIE and MLS error immunity. The obvious choice is to
adopt an "absolute scaling" where x.s = 1, and make the peak levels of the unfiltered PIE and MLS signals
equal (so that the noise immunity advantage of MLS is known [4]). Thus a third-order nonlinearity at -20
dB would be written

d{x;(n} = 01] x(n)]® . 3)

All of the variables used in the simulations are represented by double-precision floating-point numbers
which offer a relative error due to mantissa quantisation of 2% (-319 dB).

2 PIE DISTORTION IMMUNITY

Periodic impulse testing reveals the periodic impulse response of the system under investigation directly
by applying a periodic impulse to the DUT and sampling the output signal. Physically this excitation can be
obtained using a pulse generator or one of the many test compact discs with a periodic impulse signal
track. No postprocessing upon the measured system output signal is required (although averaging several
impulse periods can improve random noise immunity - see Sec. 4), and the PIE simulation process can
be summarised as:

x(n) = 6(n)
x;(n) = hin)

Ply(n) = y(n) “
e(n) = d{x(n}

Referring to Eq. (2), we now examine the consequences of second-order nonlinearity by setting r = 2 and
the distortion level A = 0.1 (-20 dB). The first 256 samples of the error sequence e(n) is plotted in the
time-domain in Fig. 4(a), and can be seen to contain a large peak coincident with the linear impulse
response (the amplitude scaling in the time-domain plots is relative to the peak level of the unfiltered
driving signal). In general the error due to nonlinearity will contain a “linear' component g(n) identical in
shape to the linear impulse response of the system, and also a nonlinear part ey(n). It is the nonlinear
component eq(n) of the impulse error which causes the raggedness seen in the magnitude response of
the example presented in Fig. 1. Conversely the linear component e(n) represents a gain change in the
measurement, i.e. the observed gain of the system under examination has changed due to nonlinearity.
With some applications this gain change is important, see for example [2], but in many situations such as
loudspeaker testing we are interested in the relative linear transfer function rather than the absolute gain
of the DUT. Hence in our study of distortion immunity it is useful to be able to distinguish between linear
and nonlinear errors in the impulse response measurement. We can perform such an “error normalisation'
by subtracting a scaled version of the linear impulse response h(n) from the overall error sequence e(n),

en(n) = eln) - ghln). (5)
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Fig. 4. PIE-derived error due to second-order nonlinearity.
(@) Time domain e(n). (b) Frequency domain.

It is easy to show that en(n) is minimised in an rms sense by setting the gain error g to

L1

Z e(k) h(k)
ih(k)z |

This analysis of gain change due to nonlinearity is similar to the study undertaken by Vanderkooy [11].
Fig. 5 shows the nonlinear component of the overall error shown in Fig.4.

g (6)

The distortion immunity /4y of the impulse measurement is calculated as the ratio of linear impulse
response energy to nonlinear error energy:

l¢ = 10log,,

L1
2
%:h(k)
Zen/(k)2

| k=0

(7)
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Fig. 5. PIE-derived normalised nonlinear error due to second-order
nonlinearity. (a) Time domain en(n). (b) Frequency domain.

Simulations were performed for second- to seventh-order nonlinearity with the 1 kHz lowpass FIR filter

and distortion immunity tabulated in Table 1. The accuracy of the PIE simulations is extremely high
because:

(i) the error sequence can be calculated directly [Eq. (4)], rather than by subtracting the h,(n) sequence
from h(n) as described in Sec. 1 [Eq. (1)], and

(i) no postprocessing operation is required.

Direct calculation of en(n) allows simulated distortion immunity to exceed the limits that would otherwise
be present due to mantissa quantisation in the floating-point variables. Theoretically, the maximum
distortion immunity that can be recorded using this simulation technique is bounded by the range of the
simulation variables - which is of the order of 6000 dB for double-precision floating-point numbers. The
PIE distortion immunity results collated in Table 1 are well below this limit. The relative error of en(n) (i.e.
the error of the impulse error sequence) is limited by quantisation effects in the floating point variables at
approximately -300 dB.
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Table 1. Distortion immunity of impulse response measurements for 1
kHz FIR lowpass filter with A4 = -20 dB.

. . PIE Distortion | MLS Distortion IRS Distortion
Distortion . . .
Order Immunity Immunity Immunity
dB dB dB
2 54.7 294 > 262
3 77.2 354 36.6
4 99.7 35.9 > 265
5 123 384 41.4
6 146 39.7 > 267
7 169 414 46.2

Table 2. Noise immunity advantage of MLS over PIE for 1 kHz FIR
lowpass filter, when distortion immunity has been normalised. Results
extrapolated from Table 1 data and confirmed by additional simulations.

Distortion Relative MLS MLS Noise
Distortion Immunity Excitation Immunity
Order Amplitude Advantage
dB dB dB
2 54.7 -25.3 7.8
3 77.2 -20.9 12.2
4 99.7 -21.3 11.8
5 123 -21.2 11.9
6 146 -21.3 11.8
7 169 -21.3 11.8

Table 3. Distortion immunity of impulse response measurements for 10
kHz FIR lowpass filter with Aq = -20 dB.

. . PIE Distortion | MLS Distortion IRS Distortion
Distortion . . .
Order Immunity Immunity Immunity
dB dB dB
2 36.4 219 > 263
3 42.4 23.9 23.9
4 47.6 16.6 > 254
5 53.3 16.1 16.1
6 59.2 10.6 > 246
7 65.3 8.9 8.9
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Table 4. Noise immunity advantage of MLS over PIE for 10 kHz FIR
lowpass filter, when distortion immunity has been normalised. Results
extrapolated from Table 3 data and confirmed by additional

simulations.
Distortion Relative MLS MLS Noise
Distortion Immunity Excitation Immunity
Order Amplitude Advantage
dB dB dB

2 36.4 -14.5 18.6

3 424 -9.3 23.8

4 47.6 -10.3 22.8

5 53.3 -9.3 23.8

6 59.2 -9.7 23.4

7 65.3 94 23.7

3 MLS DISTORTION IMMUNITY
3.1 Review of MLS Measurement Techniques

Maximum length sequences are pseudorandom binary signals that can be generated from digital shift
registers with appropriate EXCLUSIVE-OR feedback structures. If an MLS s(n) is generated from an mth-
order shift register (i.e. one with m stages), then all shift register states bar one (all 0's) are included in
each MLS period of length L. Thus L = 2"-1 samples. Fig. 6(a) shows a fifth-order MLS where the (1,0)
shift register logic output has been transformed to (-1,1) scaled voltages and a zero-order hold is used
between samples. If we follow the convention adopted by Rife and Vanderkooy [4] of scaling
autocorrelation and cross-correlation operations by 1/(L+1) rather than the usual 1/L, then the first-order
circular autocorrelation Q1 of an MLS is a unit impulse with a DC offset:

s(n) ® s(n)

L-1
L11 ZS(k)s(k+n) (®)
k=0

= J(n)- ! , O<n<L.
L+1

where @ represents circular cross-correlation and all indices within the summation are calculated mod L.

Fig. 6(b) shows the autocorrelation of the fifth-order sequence shown in Fig. 6(a). When an unfiltered MLS

is applied to a linear system with impulse response h(n) of length less than the period of the MLS, then

cross-correlating the input and output of the system recovers the AC component of h(n) together with an

attenuated DC component [4]:

Q1 (”)
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Fig. 6. (a) Unfiltered 31-point MLS s(n) generated from fifth-order
shift register with zero-order hold. (b) Autocorrelation Q+(n) of (a).

In many applications such as loudspeaker testing the DUT will be AC coupled, and so the DC component
will essentially be equal to zero. A practical MLS measurement system based around a personal
computer would generate the MLS excitation using a shift register either in software or hardware. The
MLS is applied to the input of the DUT and the output signal sampled using an analog-to-digital converter
(ADC) over at least one measurement period after the system has settled to steady state operation. The
measured output sequence is then cross-correlated with the known input sequence to reveal the impulse
response of the system. There are several methods of performing the cross-correlation, the most efficient
of which is by fast Hadamard transform (FHT) where an L-point cross-correlation can be performed with
only 2.5 L logyL floating point additions - see Borish and Angell [12] and Borish [13] for details.

10
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3.2 MLS Distortion Immunity

We analyse MLS distortion immunity using an eleventh-order sequence with EXCLUSIVE-OR feedback
taps from the second and eleventh shift register stages [13]. This results in a commonly used sequence
period of 2047 samples. The MLS signal is convolved with the linear impulse response of the simulated
system, again the 1 kHz lowpass FIR filter shown in Fig. 3. The MLS convolution, like an MLS cross-
correlation, is most efficiently performed by FHT [14]. Distorting the convolved driving signal will corrupt
the impulse response obtained from the measurement, but the nature of the distortion is different from that
of a PIE-derived measurement because of the postprocessing cross-correlation operation:

s(n)® y(n)

S slk)yln k)

The effect that nonlinear distortion has upon MLS-derived impulse responses is shown in Fig. 7. The 1
kHz FIR lowpass filter whose full impulse response h(n) is shown in Fig. 7(a) is convolved with the 2047-
point MLS, resulting in the filtered MLS signal in Fig. 7(b). The filtered MLS signal is then distorted by
second-order nonlinearity, and the result cross-correlated with the unfiltered MLS to recover the corrupted
impulse response ho(n) in Fig. 7(c). Although for most of the simulations in this paper we have adopted a
distortion amplitude Ay = -20 dB, in this example we have set Aq = -10 dB in order to clearly show the
nature of the artifacts in the recovered impulse response (the amplitude of the nonlinearity does not
change the shape of the impulse error, just its amplitude relative to the linear impulse response).
Immediately evident is the "spiky" or "lumpy" nature of the error in the tail of the impulse response, an
observation which has been noted many times [10], [15], [16], [4], [17], [11].

Ply(n)]
(10)

Because cross-correlation is a distributive process, impulse error e(n) can be calculated by cross-
correlating s(n) with the driving sequence distortion d{x¢(n)}. Again, this has the benefit of increasing
simulation accuracy since calculating e(n) does not now involve a subtraction from h(n). The MLS
simulation summary is thus:

xi(n) = s(n) O h(n) (11)

The nonlinear component en(n) of e(n) is calculated using the methodology described in Sec. 2. Although
the error is calculated directly [Eq. (11)], the accuracy of the MLS simulations is not as high as that
obtained from the PIE experiments. The cross-correlation postprocessing operation required for MLS
involves logz(L/2) floating-point additions or subtractions for each error sample when the fast Hadamard
transform is used, hence the theoretical maximum MLS distortion immunity that can be recorded using
this simulation technique is bounded by floating-point mantissa quantisation at approximately 300 dB. The
results recorded in Tables 1 - 4 are well within this limit.

Fig. 8 shows the impulse distortion e(n) due to a second-order nonlinearity for A; = -20 dB. Because a
filtered MLS possesses an approximately symmetrical amplitude distribution, then even-order nonlinearity
results in very low gain error, and the normalised error sequence is very similar to the unnormalised error
[11]. However, odd-order memoryless nonlinearity results in a large error sequence component that is co-
incident with the linear impulse response, and error normalisation thus results in a significant fall in error
level. For example, the third-order impulse error with the 1 kHz filter falls by 4 dB after normalisation
(compare Figs. 9 and 10). Table 1 presents the simulation results for (untruncated) MLS distortion
immunity with the 1 kHz filter and nonlinearities ranging from second- to seventh-order.

11
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Fig. 7. (a) Impulse response h(n) of 1 kHz lowpass FIR filter. (b) MLS signal after filtering
with 1 kHz lowpass filter. (c) MLS-derived impulse response of 1 kHz filter when filtered
MLS has been distorted with second-order nonlinearity at -10 dB. The spiky error can
clearly be seen in the tail of the impulse response, and can be compared with the
uncorrupted impulse response h(n) of the lowpass filter in (a).
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Fig. 9. MLS-derived impulse response error for 1 kHz filter and
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Fig. 10. MLS-derived nonlinear impulse response error (following
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3.3 Enhancing MLS Distortion Immunity by Truncation

We will now examine the effect that truncating a recovered impulse response has upon MLS distortion
immunity. Rife and Vanderkooy [4] conjecture that distorting an MLS results in an MLS error sequence
that can be viewed as a phase-randomised signal in the frequency domain which will, after cross-
correlation, result in a recovered nonlinear impulse error ey(n) that is evenly spread over the
measurement period. This error distribution model will henceforth be referred to as the constant error
density model. Since the linear impulse response h(n) will typically be contained in the first few samples of
the measurement, then truncating a measurement of period L at { samples should result in an increase in
distortion immunity of T dB given by

T = 10Iog1o{é} dB . (12)

To investigate the accuracy of the constant error density model some tests were performed upon the
normalised error sequences en(n) obtained from the simulations. Fig. 11 shows the normalised error
sequences and error distributions for distortion orders 2 through 5. The error distributions P(n) are
obtained by calculating error energy accumulation across the sequence as a proportion of total error
energy after removing the DC error component,

n L1
Z enl(k)_%zenl(j)
P(n) = == . (13)
Z enl(k)_%zenl(j)
k=0 | j=0 |

Hence for a constant error density, P(n) should plot as a straight line from point 0, (0%) to point (L-1),
(100%).

An examination of Fig. 11 indicates two trends:

(i) For similar orders of nonlinearity, even-order error distributions exhibit a greater degree of lumpiness
than the odd-order distributions.

(i) The distributions become smoother as the order of nonlinearity increases.

Further simulations with different MLS periods L (not shown here) have confirmed that these results are
general. Hence the second-order error sequence will usually exhibit the lumpiest distribution; for the
examples shown in Fig. 11, truncating the second-order measurement at 256 samples would increase
distortion immunity by 4.5 dB rather than the 9 dB predicted by [Eq. (12)]. However, a truncation anywhere
in the fifth-order error sequence will result in an increase in distortion immunity close to the predicted
improvement, a result that is due to the smoother error distribution of the higher-order nonlinearity. The
smoothing of error distribution with increasing order of nonlinearity is not surprising; the amplitude peaks
in the filtered MLS will be accentuated by nonlinearity, and, for high-order distortion, tend to result in
impulse-like transient errors in the distorted MLS. These transients result in an error sequence evenly
spread across the recovered impulse response since cross-correlation with the unfiltered MLS s(n) is
equivalent to a time-reversed convolution with s(n) (i.e. the error transients are convolved with s(-n); see
[4] for a more detailed discussion of transient noise immunity in MLS measurements).
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Fig. 11. Normalised nonlinear impulse response errors en(n) and error distributions P(n) for MLS measurement
of 1 kHz lowpass filter with (a), (b) second-, (c), (d) third-, (e), (f) fourth- and (g), (h) fifth-order nonlinearity.
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It is important to note that, for low and particularly even-order nonlinearity, the increase in distortion
immunity due to truncation is not necessarily lower than predicted by [Eq. (12)]. Depending on the
particular MLS period used and the distortion order, it is also possible that the increase in distortion
immunity will be higher than predicted. In general, the uneven error distributions introduce a degree of
uncertainty to the improvement in distortion immunity gained from truncation. Since the degree of
uncertainty in MLS error distribution is generally larger for even-order nonlinearity than for odd-order
nonlinearity, a significant reduction in uncertainty is obtained by employing inverse repeat sequences
(IRS), which exhibit complete immunity to even-order nonlinearity (see Sec. 6).

Rife and Vanderkooy also suggest that the error will tend to spread more evenly as the stimulus applied to
the nonlinearity approaches a Gaussian amplitude distribution. The simulations so far have employed
MLS signals filtered using a 1 kHz lowpass filter, resulting in a quasi-Gaussian amplitude distribution (Fig.
12). This can be compared to the MLS amplitude distribution shown in Fig. 13, obtained by lowpass
filtering with a higher cutoff frequency (20 kHz), which is evidently not Gaussian. However, the impulse
error distribution for the 20 kHz filtered MLS distorted with second-order nonlinearity [Fig. 14(b)] is very
similar to the 1 kHz result shown in Fig. 11(b). Conversely the third-order error distribution for the 20 kHz
filtered MLS [Fig. 14(d)] is less smooth than the 1 kHz result presented in Fig.11(d). These results suggest
an ambiguous relationship between the filtered MLS amplitude distribution and error distribution.
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Although we have so far used only memoryless distortion in our simulations, many physical nonlinear
error mechanisms exhibit memory, i.e. where the current value of the error sequence depends upon
previous values of the signal applied to the nonlinearity. Distortion mechanisms with memory usually
exhibit frequency-dependent characteristics. In a private communication to the authors, Vanderkooy
conjectures that MLS error sequence distributions due to nonlinearity with memory exhibit a degree of
smoothing compared to the equivalent memoryless cases. In order to test this hypothesis we performed
further simulations using a simple model for distortion with memory, where one argument to the
nonlinearity is delayed by b samples. Hence for an rth-order nonlinearity,

dfx;(n} = A{"f(”)}r_[”(”'b)} . (14)

Xref Xref

The results of our simulations confirm that for even-order nonlinearity, memory in the distortion
mechanism does tend to smooth error distributions. For example, Fig. 15(a) and (b) show the error
sequence and distribution for second-order nonlinearity when b = 60; the plots can be compared to the
memoryless error sequences in Fig. 11(a) and (b). However, for odd-order nonlinearity with memory, the
linear gain error is delayed relative to h(n) and is not removed during normalisation. This behaviour results
in an error spike close to the linear impulse response, which cannot be removed by truncating the impulse
response. Our simulations have indicated that the magnitude of the error spike is generally largest for
third-order nonlinearity with memory, and for this case truncation will not yield large increases in distortion
immunity. Fig. 15(c) and (d) show the error sequence and distribution for third-order nonlinearity with
memory (b = 60), where 45 % of the total impulse response error energy is concentrated in the first 256
samples (12.5 %) of the measurement period.

Generally then the error distributions are evenly spread across the measurement period, a result which
validates the constant error density model. Since noise artifacts will also be spread evenly across the
measurement period, then MLS allows a basic separation of linear and error impulse response
components. As we shall see in the next section, this behaviour is extremely useful in achieving optimal
excitation amplitude.

4 OPTIMAL EXCITATION AMPLITUDE AND PERIOD IN MLS MEASUREMENTS

So far we have considered distortion immunity of MLS and PIE measurements, but real measurement
environments will tend to suffer both distortion and noise corruption. In this section we ask: what is the
fotal error immunity advantage of MLS over PIE, if any ? We will also examine methods of maximising
total error immunity in practical MLS measurement systems, including selection of optimal excitation
amplitude and measurement period.

4.1 Total Error Inmunity Advantage of MLS over PIE

Rife and Vanderkooy [4] show that an unfiltered MLS has (L+1) times the signal power of a PIE at all
signal frequencies bar DC when the peak signal voltage and sequence period are the same for both
cases. This result is a direct consequence of the uniform spread of MLS excitation energy across the
measurement period, compared to the localised (unit impulse) PIE signal. The noise power in a system is
usually fixed in level (for example, room noise in a loudspeaker measurement). Thus the excitation signal-
to-noise ratio in an MLS measurement is 10log:o(L+1) dB higher than PIE. The energy conservation
property of MLS cross-correlation [18] preserves the signal-to-noise ratio advantage of MLS through to
the recovered impulse response. Thus MLS techniques possess a noise immunity advantage of
approximately 10logi(L+1) dB over PIE, a result that is well known [4], [12], [19]. However, again
compared to a PIE with equal (unfiltered) peak excitation amplitude, MLS has a distortion immunity
disadvantage when measuring systems with bandwidths significantly lower than half the sampling
frequency of the test system. In the following discussion we outline the reasons for this behaviour and
argue that, broadly speaking, the total error immunity advantage shown by MLS is somewhat less than
10log1o(L+1) dB.
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Consider a hypothetical system with a linear transfer function characterised by a unit impulse response,
i.e. h(n) = §(n). Applying either an MLS or PIE to such a system will result in an output signal unchanged
from the input, i.e. for both cases the output signal has a binary amplitude distribution. Thus for equal peak
input amplitudes and measurement periods, the “filtered' MLS and PIE signals possess identical peak
voltages, although the MLS has (L+1) times the AC signal power of the PIE. If the filtered signals are now
subject to memoryless nonlinearity, then the resultant MLS error signal will also have (L+1) times the
power of the PIE error signal (ignoring for the moment the characteristics of the error signals). Because
both the MLS signal and nonlinear error powers are (L+1) times the respective powers for PIE, the
distortion immunities for the two stimuli are equal. Again this is a direct consequence of the energy
conservation property of MLS cross-correlation. Now consider what happens when the main lobe of the
system impulse response broadens over at least a few samples, for example when the system bandwidth
is lower than half the measurement system sampling frequency. If the peak input excitations and the
measurement periods are again equal, the filtered excitation will tend to have a higher peak voltage for
MLS compared to PIE. This occurs because ‘runs' of successive 1's and -1's in the unfiltered MLS
stimulus [20] effectively integrate the system impulse response over regions of the measurement period
during convolution, whereas for PIE the system is stimulated for one sample only. This behaviour is
illustrated by comparing the peak voltage for the 1 kHz filtered PIE [Fig. 3(a)] to that of the 1 kHz filtered
MLS [Fig. 7(b)]; note the change in vertical axis scaling. The higher peak voltage of the filtered MLS
stimulates any nonlinearity more vigorously than for PIE, hence the error energy within the filtered and
distorted MLS is greater than (L+1) times the error energy encountered in PIE. Consequently MLS has a
lower excitation signal-to-distortion ratio than PIE, and hence a distortion immunity disadvantage for the
lower system bandwidth. As the system bandwidth increases and the system impulse response
approaches a unit impulse, then the MLS distortion immunity disadvantage decreases, eventually
becoming zero when the test system impulse response is equal to a unit impulse.

Two examples that help to illustrate this behaviour are presented in Tables 1 and 3, where the distortion
immunities of (untruncated) MLS-derived impulse responses are compared to PIE measurements for
memoryless nonlinearities ranging from second to seventh order. Both the unfiltered peak amplitude prior
to filtering and the measurement period (L = 2047) are constant throughout the MLS and PIE simulations.
Table 1 compares the distortion immunities for the two methods with 1 kHz FIR filtering, indicating a clear
disadvantage for MLS under these conditions with all distortion orders. MLS distortion immunity
disadvantage remains evident when the filter cutoff frequency is increased to 10 kHz (Table 3), although
the disadvantage is now reduced somewhat (as predicted). MLS distortion immunity disadvantage under
these excitation conditions must be weighed against the improved noise performance compared to PIE
which, for L = 2047, will equal 33.1 dB. The question now posed is, what is the effect of varying the
excitation amplitude upon the relative noise and distortion immunities of the two methods ?

For any transfer function measurement strategy and simple distortion mechanisms described by Eq. (2),
the error due to nonlinearity increases as the peak level of the excitation increases, although the rate at
which the error increases depends upon the order of nonlinearity that the test system is subject to. A 6 dB
increase in driving level will decrease distortion immunity by 6 dB for second-order nonlinearity, 12 dB for
third-order, and so on. If the increase in peak unfiltered excitation amplitude is AA dB, then we can write

Alg = -(r=1)nA . (15)

For system noise that is fixed in level, the noise immunity will increase by 6 dB for every 6 dB increase in
excitation amplitude. If I, represents noise immunity in dB, then

Al, = DA . (16)

We can use Egs. (15) and (16) to predict the noise immunity advantage of MLS over PIE following
distortion immunity normalisation. Consider the third-order result from Table 1 where, for equal unfiltered
peak excitation amplitudes, PIE has a distortion immunity of 77.2 dB while MLS offers 35.4 dB. To make
the distortion immunities for both techniques equal to 77.2 dB, the MLS excitation amplitude must be
reduced. Using Eq. (15), the required reduction in amplitude is (77.2 - 35.4)/2 = 20.9 dB. Reducing the
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MLS excitation amplitude by this amount yields a reduced noise immunity advantage for MLS; using Eq.
(16) the new MLS noise immunity advantage is (33.1 - 20.9) = 12.2 dB. This procedure was followed for
all of the examples listed in Tables 1 and 3, and the new noise immunity results recorded in Tables 2 and
4 respectively. These predicted results were found to agree identically with a further set of MLS
simulations performed at the lower excitation amplitudes. Generally it is clear that some degree of MLS
noise immunity advantage remains following distortion immunity normalisation, although the noise
immunity advantage is then not as high as 10 log1o (L+1) dB.

How can we use this information to predict the minimum total error immunity advantage of MLS over PIE
? The answer to this question evidently depends upon the relative levels of noise and distortion present in
the test environment. For a system with low levels of weak nonlinearity the noise error will dominate and
total error immunity will be limited by the peak amplitude allowed in the system before overload. In this
case MLS will show a 10 log1o (L+1) dB total error immunity advantage over PIE. Most systems however
will exhibit some degree of noise and distortion error. For these situations there will be some optimum
driving level where the error contributions due to noise and distortion are equal and together result in the
highest possible overall error immunity. When the driving signal is increased above this optimum level the
distortion error will dominate, while noise will be dominant for lower signal levels. If MLS still offers a noise
immunity advantage over PIE when distortion immunities for both techniques are equal, then a little
thought reveals that MLS must also possess some degree of total error immunity advantage over PIE
when driving levels are optimised individually for both cases. Generally we can state that given the same
measurement period L but optimal excitation amplitudes, MLS offers a total error immunity advantage
over PIE of between 0 dB and 10 log1o (L+1) dB, the exact advantage depending on (i) the relative levels
of noise and distortion in the test system and (ii) the sampling frequency employed for the measurement.
We have seen that with normalised distortion immunities, MLS noise immunity advantage tends to
increase as the bandwidth of the DUT increases relative to the sampling frequency of the test system.
Hence the greatest overall error immunity advantage offered by MLS over PIE for a given DUT occurs
when the MLS/PIE sampling rate is as low as possible.

The arguments presented so far are based upon measurements where the recovered impulse response
remains untruncated. As we have seen in Sec. 3, truncation will yield enhancements in distortion immunity
for MLS where impulse error due to nonlinearity is generally evenly spread across the measurement
period. Noise immunity will also be improved by truncation for both MLS and PIE, since the noise error is
spread evenly across the measurement period for both techniques. However, nonlinear errors in PIE
measurements are coincident with the linear impulse (Figs. 3, 4, 5) and thus PIE distortion immunity will
not be increased by truncation. Thus for a system prone to both noise and distortion, truncation improves
the minimum total error immunity advantage of MLS over PIE. We should also note that we have
characterised nonlinearity in the measurement system by simple power laws [see Eq. (2)], although many
practical systems also suffer from other types of nonlinearity. For example, ADC quantisation distortion
can corrupt the data acquisition stage of measurement, while crossover distortion and slew limiting can
occur in power amplifiers used to drive loudspeakers under test. To a first-degree approximation, both
quantisation distortion and crossover nonlinearity remain fixed in level as the excitation amplitude is
varied. These errors can therefore be treated as system noise and do not change the basic arguments
presented earlier. For a full discussion of the effects of slew limiting in MLS measurements we refer the
reader to Godfrey and Murgatroyd [10] and Vanderkooy [11].

4.2 Determining Optimal Excitation Amplitude

We have seen that, given optimal excitation amplitudes for both techniques, MLS measurements
theoretically exhibit at least some degree of overall error immunity advantage over PIE. However, practical
PIE measurements have a further disadvantage since it is often difficult to achieve optimal excitation
amplitude. First, the driving signal energy is relatively low so that the effects of distortion are often
negligible in comparison to the noise error. The driving system (for example, the power amplifier in a
loudspeaker PIE measurement) is often overloaded before the optimal driving amplitude is achieved.
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Second, there is the problem of effectively monitoring the error due to nonlinearity in PIE measurements,
because the linear impulse and nonlinear error signals are coincident in the time domain. Conversely,
MLS allows the overall error level to be easily monitored by windowing the tail of the recovered impulse
response, which given a sufficiently long measurement period will contain only noise and distortion error
components (see Sec. 3). Optimal MLS excitation amplitude is achieved when there is minimal energy in
the tail of the impulse response with respect to the energy of the linear (initial) part of the impulse
response. This is equivalent to maximising the MLS coherence function proposed by Rife and
Vanderkooy [4]. Consider Fig. 16 which show the last 1023-points of the recovered impulse responses
from simulated MLS measurements which have been corrupted by nonlinearity (third order) and Gaussian
noise. Remembering that the amplitude scaling in the time-domain plots is relative to the peak level of the
driving signal, Fig. 16(a) shows the impulse tail when the driving level is 6 dB too high and distortion
artifacts dominate the error signal. Optimal error immunity is achieved in Fig. 16(b) by reducing the MLS
amplitude by 6 dB which results in noise and distortion errors of equal energy. The overall error immunity
is increased by about 9 dB over Fig. 16(a). When the driving level is further reduced by 6 dB in Fig. 16(c),
noise now dominates and overall error immunity is reduced by approximately 3 dB from the optimal
arrangement of Fig. 16(b).

4.3 Selecting Optimal Measurement Period

Given that we can determine the optimal excitation amplitude in an MLS measurement by examining the
tail of the recovered impulse response, what is the best MLS period L to use ? Although we have only
presented results for L = 2047, additional simulations with L ranging from 255 to 8191 samples have
indicated that MLS noise and distortion immunity for a given DUT both remain fairly constant as L
changes. If the MLS period is much longer than the length of the impulse response being measured then
noise and distortion immunity can both be substantially increased by discarding the tail of the recovered
PIR, because as we have seen in Sec. 3, both the error due to noise and that due to distortion are evenly
distributed across the measurement period. Of course the increase in noise immunity obtained from such
a truncation could also be effected by averaging several shorter measurements, but averaging has no
effect upon distortion immunity, and the single long MLS measurement ultimately takes less time to
execute. Thus we conclude that for maximum overall error immunity the period of MLS measurements
should be made as large as possible, and the PIR recovered from cross-correlation should be truncated
to as short a length as possible.

5 CUMULATIVE SPECTRAL DECAY PLOTS OF WEAKLY NONLINEAR SYSTEMS

In general, impulse response corruption due to nonlinearity will also corrupt information derived from the
basic impulse response data. For example, Vanderkooy [11] has studied the effect of nonlinearity upon
reverberation plots obtained from MLS measurements. In this section we examine the effect that weak
nonlinearity has upon the accuracy of cumulative spectral decay (CSD) plots generated from impulse
response measurements. Examples illustrate the increases in decay plot resolution to be gained from
optimising stimulus amplitude in the impulse response measurement.

CSD or "waterfall" plots indicate how linear systems respond to tone bursts. Their use is becoming more
widespread in loudspeaker evaluation [8], [9] because they allow a simple analysis of delayed
resonances. An appropriately apodized CSD plot C4(r,v) is generated using the following function:

Calr.0) = F{h(t) wit.z} (17)
where T is the time variable of the plot;
] is the frequency variable of the plot;
F is the Fourier operator;

h(t) is the impulse response of the DUT;
w(t,7) is a window function which influences the time and frequency resolution
of the generated plot.
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Fig. 16. Tail of impulse response from noisy and nonlinear MLS
measurements. (a) MLS amplitude 6 dB too high; third-order distortion
artifacts dominate. (b) Optimal excitation amplitude; noise and distortion
powers are equal. (c) MLS amplitude 6 dB too low; noise dominates.
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For a full discussion of CSD plots we refer the reader to [21] and [22]. Following the conventions
established in these works, the simulations presented below were generated using a raised-cosine
window function with a rise time at of 0.5 ms, fixed window time wt of 3.5 ms and a fall time dt of 2 ms [Fig.
17(a)]. The 0 ms graduation on the decay plot time axes corresponds to the peak of the impulse response
under evaluation. Fig. 17(b) indicates the spectral decay of a 20 kHz lowpass FIR filter. Apart from the
characteristic FIR structure ringing around 20 kHz, this waterfall diagram shows a rapid energy decay
across the audio band. Now consider Fig. 17(c), which shows the cumulative spectral decay of the same
filter using a PIE-derived impulse response corrupted by second-order nonlinearity. Other than some
additional high frequency energy above 20 kHz the plot is very similar to that of the linear filter plotted in
Fig. 17(b). This behaviour is expected since nonlinear artifacts in a PIE measurement are concentrated in
the vicinity around the linear impulse response (see Sec. 2), and the error component therefore falls
outside the analysis window after the first few CSD sections. However, this is not true of an MLS-based
measurement, where we have seen in Sec. 3 that error due to nonlinearity is spread evenly over the
entire measurement period. Here the error will effect the cumulative spectral decay right across the plot
and will be especially influential towards the front of the diagram where the main impulse energy has
fallen outside the analysis window. This behaviour is illustrated in Fig. 17(d) where the waterfall has been
generated from an MLS measurement with second-order nonlinearity. After the initial energy decay,
nonlinear artifacts within the analysis window cause ripples in the decay plot which could be mistaken for
delayed resonances attributable to the linear characteristics of the DUT. Similar errors occur in both MLS
and PIE measurements that are corrupted with noise (which is, of course, evenly spread across the
measurement period for both techniques). Indeed, poor noise immunity in PIE measurements can
severely limit the resolution obtained from PIE-derived decay plots, and the advantages that MLS
measurements possess in terms of total error immunity once optimal excitation amplitude is established
are of real benefit here. An example used to illustrate the benefits of optimising excitation levels in an
MLS-derived decay plot is presented in Fig. 18, where white Gaussian noise and fourth-order nonlinearity
corrupt impulse response measurements of the 20 kHz FIR filter used for the simulations of Fig. 17. The
sequence of excitation conditions is similar to that of Fig. 16, i.e. we examine the plots obtained from
measurements where the driving amplitude is 10 dB too high [Fig. 18(a)], followed by optimal excitation
amplitude [Fig. 18(b)], and finally an amplitude which is 10 dB below optimum [Fig. 18(c)]. In Fig. 18(a) the
error due to nonlinearity severely corrupts the decay plot, while in Fig. 18(c) noise is largely responsible
for the decay plot error. The decay plot shown in Fig. 18(b) clearly possesses the lowest error component,
a condition which is coincidental with optimal excitation amplitude being achieved. Although this is a
slightly contrived example in that the use of high-order nonlinearity accentuates the increase in total
impulse response error when the excitation amplitude is too high, it does illustrate the gains to be made
from optimising excitation conditions. It is interesting to compare the decay plot obtained from the optimal
MLS measurement [Fig. 18 (b)] to that obtained from an optimal PIE stimulus (Fig. 19). The total error
immunity advantage of MLS is clearly evident.
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minimal plot corruption. (c) Excitation 10 dB too low, where
noise error dominates.
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6 INVERSE REPEAT SEQUENCES

Referring to our nonlinear system model [Fig. 2(c)], consider the error signal d{x:(n)} due to a second-
order nonlinearity:

d{x¢(n} = Aalx{n]* . (18)

Now
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Combining Egs. (18) and (19) yields

oo} = 4> S ) K) An-) An-) 2

=0 j=0

When the input signal is an MLS, then x(n) = s(n) and the impulse error e(n) is obtained by cross-
correlating d{x:(n)} with x(n) [as in Eq. (11)]:
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Here Q; is the second-order autocorrelation of the unfiltered MLS. We can write Eq. (21) in more general
terms as a function of the second-order kernel of the system hy(i, j), of which our memoryless second-
order nonlinearity is a specific case, i.e.

hy(i, j) = Aq hi)h(j) - (22)
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Generalising Eq. (21) to include a number of nonlinear kernels yields

L1

e(n) = Zi h2(i,7)Qz(n ~i,n - j)

=0 j=0

L1 L1 LA
+ Zzzh3(i,j,k)Q3(n—i,n—j,n—k) )

i=0 j=0 k=0

L1 L1 L1 L
+ Zzzzm(i,j,k,/)Q4(n—i,n—j,n—k,n—l)

i=0  j=0 k=0 [=0

+

Each term in Eq. (23) is an r-dimensional convolution of a system kernel h(ni, ng, ..., n;) with the
appropriate autocorrelation function Q«(n, no, ..., ny) of the input sequence, where

L1
(s 1y, o) = L11Zx(k)x(k+n1)x(k+n2)...x(k+nr) . (24)
k=0

Using the shift and add property of MLS signals [23] it is easy to show that Q. can only take on two values,
L/(L+1) (a “spike') and -1/(L+1). It is the spikes in Q: that cause the spikiness in the impulse error
sequence e(n) that we noted in Sec. 3.2. Following arguments similar to those presented in [24] it can be
shown that there are approximately L spikes in Qr, evenly distributed across the L co-ordinates of the r-
dimensional autocorrelation function. It is the even distribution of spikes in Qr which causes e(n) to be
evenly distributed across L, as we have seen in Sec. 3.3.

Now consider a periodic binary signal x(n) suitable for impulse response measurement, where the second
half of the sequence is the exact inverse of the first half, i.e.

x(n +L) = - x(n) . (25)

Note that the period 2L of such a sequence will always contain an even number of samples. Referring to
Eq. (24) and extending the limits of the summation to 2L-1, all even-order autocorrelations (r even) will be
exactly zero, simply because for all n1, nz ... n, each x(k)x(k+n)...x(k+n;) term within the summation will
exactly cancel with the corresponding x(k+L)x(k+L+n4)...x(k+L+n;) term. Such a sequence would therefore
also possess complete immunity to even-order nonlinearity after cross-correlation. Due to the anti-
symmetry in x(n) the first-order autocorrelation will also possess anti-symmetry about L, i.e. Q4(n) = -
Qi(n+L). It is desirable that x(n) be chosen such that the first half of Q1 is as close to a unit impulse as
possible so that the linear impulse response of the DUT can be easily measured by cross-correlating the
system output with input (the second inverted half of the cross-correlation can simply be discarded). A
signal that satisfies these conditions is the so-called “inverse repeat sequence' (IRS), obtained from two
periods of an MLS where every other sample of the MLS is inverted [24], i.e.

x(n) = s(n) neven, 0<n<2L
(26)
=-s(n) nodd, O<n<2L .

where L is the period of the generating MLS (note that the IRS period is 2L). A 62-point IRS generated

from a 31-point MLS (5 stage shift register) is shown in Fig. 20(a). The first-order autocorrelation of an IRS
Qirst is related to the corresponding signal for the generating MLS by the following expression:
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Qrsi(n) = 51 > ) +k)

k=0
= Qms1 (n), neven (27)
= -Qusi(n), nodd
—1)"
= J(n) - (i aln-L), 0<n<2L.
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Fig. 20. (a) IRS formed from fifth-order MLS. (b) Autocorrelation sequence.

The first-order autocorrelation for the 62-point IRS is shown in Fig. 20(b), clearly showing anti-symmetry
about L. There is also a small term oscillating at a rate of half the sampling frequency due to the (-
1)"/(L+1) factor in Eq. (27). The power spectrum of a periodic sampled signal is defined as the discrete
Fourier transform (DFT) of its autocorrelation, thus the IRS is spectrally flat at all frequencies except for
DC and half the sampling frequency where the power is exactly zero. In a practical measurement system
this would not be of concern because many systems such as loudspeakers do not possess a magnitude
response that extends to DC, while the ADC used to digitise the system output signal will usually employ
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an antialiasing filter which will reject all information at half the sampling frequency. Thus by exciting a
linear system with an IRS, sampling the output of the system and cross-correlating that output with the
(known) unfiltered IRS we obtain the impulse response of the system in much the same way that we
would if using an MLS excitation. Of course the antisymmetry in the IRS autocorrelation results in an
inverted copy of the system impulse response beginning at L samples. For example, Fig. 21 shows the
recovered impulse response from a simulated 4094-point IRS measurement of the 1 kHz FIR filter. Since
the second half of the cross-correlation contains no additional information, it can simply be discarded.

We have shown that impulse response measurements from IRS signals offer complete immunity to even-
order nonlinearity. However, for odd-order distortion the recovered impulse response will still contain an
error component, although, like MLS, this error component will tend to be spread evenly across the
measurement period after error normalisation. Fig. 22(a) shows the nonlinear error component for third-
order nonlinearity at -20 dB with the 1 kHz lowpass FIR filter. This figure can be compared directly with
Fig. 11(c), which shows the equivalent MLS error sequence. The most obvious difference is that the IRS
error sequence has bipolar spikes. This is because the odd-order autocorrelation functions for an IRS can
assume 4 levels, + 1 and + 1/(L+1), whereas we have seen that MLS autocorrelation functions are two
valued. For an IRS the spikes appear in £1 pairs, and so for low-bandwidth systems, where the system
kernels hi(n1,n2,...n;) change slowly across r-dimensional space, some of the spike pairs tend to partially
cancel out in the cross-correlation operation [Eq. (23)]. This behaviour results in an increase in distortion
immunity for low-bandwidth systems (compared with the equivalent MLS case).

PIR
T

&8

fmplitude X F5SO

\ \ \ . \ \ .
512 1024 1534 2048 2560 3072 3584
Samples

Fig. 21. Output of IRS crosscorrelation indicating anti-symmetry about L samples.

In order to determine IRS distortion immunity, simulations were performed with various nonlinearities
using a process similar to that used for the MLS simulations [Eq. (11)]. MLS convolution and cross-
correlation routines take advantage of the FHT as discussed in Sec. 3, and in principle there is no reason
why IRS convolution and cross-correlation cannot also be performed using the FHT. However,
permutation routines that make the most efficient use of the FHT (as developed by Borish for MLS) are
not yet available for IRS. Hence for the IRS simulations all convolutions and crosscorrelations were
performed by FFT in the frequency domain. Because the number of samples in an IRS period is not an
exact power of 2, double-length FFTs must be used with zero padding (see chapter 12 of [25]). The
results of IRS distortion immunity simulations for second- to seventh-order nonlinearity with the 1 kHz FIR
filter are tabulated in Table 1. Distortion immunity for even-order nonlinearity is extremely high and is only
limited by the accuracy of the calculations in the simulations at approximately -250 dB (lower than MLS
simulation accuracy because of the sizeable increase in the number of computational operations required
for the IRS simulations) . For odd-order nonlinearity the IRS excitation shows a small increase in distortion
immunity over MLS. This is not true for higher bandwidth simulations tabulated in Table 3. Here the FIR
lowpass filter now has a cutoff frequency of 10 kHz and IRS odd-order distortion immunity can be seen to
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be identical to MLS. Finally we should note that, like MLS, IRS impulse response error due to nonlinearity
is generally evenly spread across the measurement period [Fig. 22(b)]l. Thus an IRS impulse
measurement will also show an increase in distortion immunity after truncation. A point worth noting is that
the second half of the autocorrelation output is the exact inverse of the first half, including any artifacts due
to noise or distortion. Hence IRS error immunity is in no way affected by subtracting the second half of the
recovered antisymmetric impulse response from the first half.

NORMALISED PIR ERROR
T T T

0.036

fimplitude * FSOD

-0.036

. | . . . . .
256 G512 768 1024 1280 1538 1752
Samples

(@)

AC_ENERGY DISTRIBUTION WORMALISED PIR ERROR
T T T T T

100

gor

[

Energy ¥

40

201

. I . . . . .
256 512 768 1024 1280 1534 1792
Samples

(b)

Fig. 22. (a) Normalised nonlinear impulse error en(n) and (b) error
distribution P(n) from IRS-derived impulse response measurement
of 1 kHz FIR filter with third-order nonlinearity.

Inverse repeat sequences thus possess an impressive distortion immunity advantage over MLS and,
given that the basic theory has been known for some time [24], [26], [27], it is surprising that IRS
techniques are not in more widespread use. Are there any disadvantages suffered by IRS
measurements? Obviously for an L-point impulse response measurement, 2L samples must be
generated, stored in memory and then cross-correlated. There is no difficulty in generating the inverse
repeat sequence since this can be formed using a shift register in a similar fashion to MLS. However,
given a memory limit in a practical measurement arrangement, MLS will recover an impulse response that
is twice as long as that available from IRS. For impulse lengths found in typical test devices such as
loudspeakers, this does not represent a problem. Since an IRS of period 2L will have the same noise
immunity as an MLS of length (2L+1), there is also no penalty to pay in terms of maximum noise
immunity. There is, however, a disadvantage in cross-correlation time for IRS when employing an FFT-
based cross-correlation algorithm. If we assume that the execution time of an (L+1)-point FFT is the same
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as an (L+1)-point FHT, and that the IRS cross-correlation comprises a forward FFT followed by an inverse
FFT both of length 4(L+1), then the 2L-point IRS cross-correlation will take approximately 8 times as long
to execute as an L-point MLS cross-correlation by FHT. In a 386 PC based system this does not present
a serious problem since a 2046-point IRS cross-correlation, coded in C language, can be performed in
about 10 seconds. Although this is quick enough for on-site measurements, the cross-correlation would
be faster if assembly level routines were used, or if FHT routines were developed for IRS.

Finally we should note that inverse repeat sequences are not the only signals that possess complete
immunity to even-order nonlinearity whilst also displaying favourable 1st-order autocorrelation
characteristics. Ternary sequences, i.e. periodic signals with three levels generated from a shift register
using modulo-3 arithmetic [28], [29], possess both of these characteristics and in fact show a third-order
distortion immunity advantage over both MLS and IRS due to their superior third-order autocorrelation
characteristics. Nevertheless ternary sequences suffer from two disadvantages compared to IRS. First,
three-level ternary sequences are more difficult to generate than binary IRS signals which only require a
simple switch circuit for digital-to-analog conversion (although this hardly represents much of an obstacle
given the wide availability of low-cost, high-performance multibit digital-to-analog converters). Second,
cross-correlation routines for use with three-level ternary sequences cannot utilise the efficient FHT,
because the FHT will only perform crosscorrelations for driving sequences with binary coefficients. More
research is required upon the use of ternary and higher-order sequences in linear transfer function
measurement.

7 CONCLUSIONS

A simulated comparison of PIE and MLS impulse measurement techniques has shown that, given optimal
excitation amplitudes, MLS methods possess superior overall error immunity. For excitations of equal
peak voltage and period L, MLS offers a 10 log1o (L+1) dB noise immunity advantage over PIE, but suffers
a distortion immunity disadvantage when the test device bandwidth is significantly lower than half the
system sampling frequency. Once optimal excitation amplitudes have been established, the exact overall
MLS error immunity advantage depends upon the characteristics of the system under test, but will for all
cases be between 0 dB and 10 log1o (L+1) dB.

An investigation into nonlinear error distribution in MLS-derived impulse measurements has confirmed
that, in general, the error is evenly distributed across the period of the recovered impulse response. Even-
order nonlinearity tends to result in less evenly spread error distributions compared to odd-order error
distributions, while as the order of nonlinearity increases, the error distributions become smoother and
more evenly spread. Memory in the nonlinearity also tends to smooth the even-order error distributions.
Further simulations have shown that the amplitude distribution of the filtered MLS is not necessarily the
major factor in determining the error distribution.

The even spread of error across the measurement period for both noise and nonlinearity has several
important implications for MLS measurements. Firstly the tendency towards separation of linear and
error components of the recovered impulse response can be used to monitor the relative error level in
an MLS measurement and adjust excitation amplitude for optimal error immunity, a feature that is not
available with PIE. Second, MLS noise and distortion immunity can be enhanced by truncating the
recovered impulse response after the linear part of the impulse has decayed to zero. In fact maximum
overall error immunity from a given MLS measurement system is obtained by choosing the longest
period available and truncating the recovered impulse response as early as possible. Finally it is
important to remember that the evenly spread MLS distortion error can also corrupt certain
measurements such as cumulative spectral decay plots, although care taken in setting the stimulus
amplitude should ensure that in most circumstances MLS offers superior performance compared to
PIE.
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The nonlinear impulse artifacts in MLS can be described in terms of the nonlinear kernels of the
system under test and the higher-order autocorrelation functions of the unfiltered MLS signal. Inverse
repeat sequences can be formed by inverting every other sample of an MLS, and they possess even-
order autocorrelation functions equal to zero. This feature endows IRS measurements with complete
immunity to even-order nonlinearity in the test device. Furthermore, for test devices where the
bandwidth is significantly lower than the sampling frequency of the measurement system, IRS will
also show some error immunity advantage over MLS for odd-order nonlinearity. An IRS shows no
disadvantages compared to MLS other than a halving in measurable impulse length given a hardware
memory limit, and an increase in cross-correlation time which is of small consequence for typical
measurement periods.
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