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COMMENTS ON "DISTORTION IMMUNITY OF three dimensions) with the input signal to yield the out-
MLS-DERIVED IMPULSE RESPONSE put signal. This three-dimensional convolution operation
MEASUREMENTS"* term is more accurately called a third-order Volterra

functional since it is actually a time function that de-
The above paper, _while a Valuable contribution, fails pends on another time function, namely, the input. The

to make an essential distinction between two different three-dimensional Fourier transform of the Volterra ker-
approaches to appraising distortion immunity, which nel H 3 (fl, f2, f3) is the Volterra nonlinear transfer func-
may result in confusion in the minds of some readers, tion of this third-order system.
The authors conclude from their normalized error se- In contrast, the Wiener-series expansion of this same ·
quence of a third-order nonlinearity [see Fig. 15(c) and nonlinearity actually comprises the sum of two function-
(d)] that "this behavior results in an error spike close to als (called G functionals in this case to distinguish them
the linear impulse response, which cannot be removed from Volterra functionals), a third-degree G functional
by truncating the impulse response." While literally true, plus a first-degree G functional (linear contribution). The
this statement requires more elaboration in order to be reason for this difference is that the Wiener approach is
properly interpreted, one that seeks to minimize the mean-squared error be-

Indeed as Fig. 15(d) clearly shows, the cumulative tween the input Gaussian noise and the output noise
error distribution suddenly jumps from 0% to over 40% when the series is truncated to a lower order, regardless
for a third-order nonlinearity, and this is obviously due of how many or few G functionals are retained in the
to the large initial spike visible in the error periodic- final series. Thus, for example, if we truncate this two-
impulse-response (PIR) sequence of Fig. 15(c). What functional Wiener series to leave only the linear contri-
the authors fail to point out, however, is that such an bution, this remaining G functional represents the best-
initial spike will occur with any conventional measure- fit linear approximation to this hypothetical third-order
ment technique, including both time-delay spectrometry nonlinear system. Truncating the single-functional Vol-
(TDS) and dual-channel fast Fourier transform (FFT). terra series, in contrast, leaves us with the constant of

The latter uses statistical cross correlation between input zero, which is just an open circuit and is clearly not the
and output, with random Gaussian noise excitation to best-fit linear approximation to a cubic nonlinearity. A
obtain the impulse response. This spike occurs because constant actually is, incidentally, the best-fit linear ap-
any odd-order nonlinearity can always be approximated proximation to any even-order nonlinearity. This ex-
by a linear system, given an input excitation signal with plains why, when assessing distortion immunity, the
known statistical properties and known amplitude, distinction between Volterra and Wiener theories only

The notion of a best-fit linear (or possibly h{gher or- becomes important when measuring systems containing
der) approximation to a nonlinear system was first inves- odd-order nonlinearities. This is born out by the authors'
tigated by Norbert Wiener and later by Schetzen 2 and Fig. 15(a) and (b), which shows the error PIR (a) and
resulted in the Wiener theory of nonlinear systems, as the cumulative error distribution (b) for a second-order

opposed to the Volterra theory on which it is based and nonlinearity. In this case there is no sudden jump in the
upon which the authors implicitly based their statement. error distribution, and there is also no clearly dominant
Unlike the Volterra series, the Wiener series comprises spike in the error PIR sequence as there is in the case
terms (called G functionals) which are mutually orthogo- of a third-order nonlinearity (c).
nal Under Gaussian white-noise excitation, and this re- Admittedly, this distinction between Volterra and
suits in a least-squared error property not shared by the Wiener theories was never made explicit in an earlier
Volterra series, publication, 3 although it was alluded to in the section

To illustrate the difference between the Volterra and on MLS coherence by a statement regarding dual-chan-
Wiener theories without reproducing a book full of the- nel FFT with Gaussian excitation: "In that case, the
ory, I'll use as an example a pure third-order nonlinearity transfer function can be identified as
which consists of a memoryless cubic operator preceded

and followed by linear filters. The Volterra series of Sxy(f)

such a system consists of a single term, namely, the Hxy(f) - Sx_(f) (38)
third-order Volterra kernel h3 (x l, 'r2, 'r3), convolved (in

which Wiener originally proved and which represents

* Manuscript received 1993 May 28. the best possible estimate of the system transfer function
i C. Dunn and M. O. Hawksford, J. Audio Eng. Soc., vol.

412 pp. 314-335 (1993 May). 3 D. D. Rife and J. Vanderkooy, "Transfer-Function Mea-
M. Schetzen, TheVolterraand WienerTheories ofNonlin- surement with Maximum-Length Sequences," J. Audio Eng.

ear Systems (Robert E. Krieger, Malabar, FL, 1989). Soc., vol. 37, pp. 419-444 (1989 June).
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in the sense that it minimizes the mean-square error In conclusion, if one uses the Wiener-series expansion
between y(t) and x(t) · h_y(t). In other words, if the of nonlinear systems as the basis for appraising distor-

actual system is noisy or exhibits nonlinearities, H_y(f) tion immunity, a fltered MLS which exhibits a nearly
is the best-fit linear approximation to the actual system Gaussian probability density function (PDF) is a nearly
behavior, and the coherence function, defined as ideal stimulus since the Wiener theory assumes a

Gaussian input as its starting point. Therefore in the

x_(f) - ISxy(f)12 Wiener-series sense (meaning in this context the best-
Sxx(f)Syy(f) (39) fit linear approximation to a given nonlinear system),

MLS methods do in fact completely reject all nonlinear
expresses the degree to which the input and output sig- distortion of finite order in the limit as the MLS period
hals are linearly related by H_(f)." In retrospect I might goes to infinity provided the analysis window is finite
have added that hxy(t)is the first-order Wiener kernel (as and the binary MLS is prefiltered to yield a nearly
opposed to the first-order Volterra kernel) and further- Gaussian PDF. In other words, when this limit is

more that the MLS method yields hxy(t)directly as the reached, one has obtained a transfer function which is the
initial spike in the PIR using a relatively short time best possible linear approximation to the actual system
window to exclude the artifacts in the PIR tail, which behavior in the least-squared error sense.
represent the contributions of the higher order Wiener If, in contrast, one uses the Volterra-series expansion
kernels. The Fourier transform of this first-order Wiener as the basis for appraising distortion immunity, then

kernel, namely,/-/xy(f), is, of course, the optimum lin- indeed the authors' implicit conclusion that MLS meth-
ear transfer function of the nonlinear system when sub- ods lack complete immunity to odd-order nonlinearities
ject to Gaussian noise excitation, is quite correct. In that case, however, it is only fair to

It is easy to show that TDS, like MLS, also does not point out that this same conclusion applies equally to

completely reject odd-order nonlinearity in the Volterra- other commonly available measurement techniques, in-
series sense implicitly used by the authors. In TDS a eluding TDS as well as dual-channel FFT methods,
swept sine wave is the stimulus and a tracking filter which similarly fail to completely reject the odd-order
at the output rejects any harmonics generated by the nonlinearities in the Volterra-series sense.
nonlinearities, provided the sweep rate is sufficiently
low. But consider that a pure sine wave applied to any DOUGLASD. RIFE, AES Fellow
third-order nonlinearity will generally result in two out- DRA Laboratories
put frequencies, 2 namely, the third harmonic which is Sterling, VA20165, USA
rejected by the tracking filter plus the fundamental fre-
quency which cannot be rejected no matter how narrow Authors' Reply n
one makes the tracking filter's bandwidth. Indeed, in We would like to thank Mr. Rife for his interest in
TDS the fundamental frequency at the output is always our paper _ and make a couple of comments concerning
interpreted as the linear component of the overall re- the points raised. Rife points out that the uneven cumula-
sponse. Thus TDS, MLS, as well as dual-channel FFT tire energy distribution for the third-order nonlinearity
methods will all show a spike near time zero in their with memory that occurs in maximum-length sequence
respective error impulse responses when measuring sys- (MLS) measurements [see Fig. 15(d)] also occurs in
terns containing any odd-order nonlinearity, time-delay spectrometry (TDS) and other measurement

As pointed out by the authors, inverse repeat se- strategies. While this is true, the intention in including
quences do reject all even-order kernels of the Volterra- this particular simulation result in the paper was not to
series expansion. This effect can be achieved using nor- criticize the performance of MLS with respect to other
mai MLS methods as well. Simply perform a normal possible measurement regimes, but to investigate the
MLS measurement and denote the resulting PIR se- nature of the MLS error distribution when the nonlinear-
quence as h+(n), then repeat the measurement, but this ity includes memory. We showed that memory in even-
time with the polarity of the driving MLS reversed, and order nonlinearities tended to smooth the error distribu-
denote this result by h_(n). Two derivative PIR se- tions [compare Figs. ll(b)and 15(b)], but forodd-order-
quences can now be formed, hev_n(n), which rejects all nonlinearity with memory the "gain error" is no longer co-
the odd-orderVolterrakernels (including the linear ker- incident in time with the linear impulse response--
neD, and hoda(n), which rejects all the even-order ker- hence it cannot be considered to be a linear error, and

nels. These two sequences are obtained as an uneven error distribution results [compare Figs. 1 l(d)
and 15(d)]. Such an uneven error distribution implies

heven(n) = h+(n) + h_(n) that, for odd-order nonlinearity with memory, MLS dis-
2 (1) tortion immunitycannot be indefinitelyenhanced byus-

ing longer and longer measurement periods and truncat-

hoda(n) = h+(n) - h_(n) (2) ing the recovered impulse response.2 In our paper, _ we showed how inverse-repeat se-

See Schetzen 2 (fig. 5.4-1) for a justification of these

expressions. 4Manuscriptreceived1993November23.
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quences (IRS) exhibit complete immunity to even-order order of nonlinearity, being approximately 1 dB for
nonlinearity, and Rife shows how this behavior can also third-order nonlinearity and5 dB for seventh-order dis-

be obtained with MLS by performing two measurements tortion. This advantage is a result of the superior odd-
where the second excitati °n signal is an inverted version order autocorrelation characteristics of the IRS excita-
of the first, and subtracting the resultant impulse re- tion signal.

sponses from one another. Such a process would require One final point not raised in our paper _ is that of
two cross-correlation operations, and a faster implemen- measuring polarity in the test system. For an MLS mea-

tation requiring only a single cross correlation would be surement, if the polarity of the excitation is known, then
to subtract the second MLS period measured at the out- the polarity of the periodic impulse response recovered

put of the system from the first MLS period before cross from cross correlation reveals whether the test system
correlation (we shall term this method the inverted MLS is inverting or noninverting. However, for both inverted-

approach). In fact, both the IRS and the inverted-MLS MLS and IRS measurements the polarity of the test sys-
methods require similar measurement and cross-correla- tem is not revealed by the polarity of the recovered
tion times and have the same maximum measurable ira- impulse response unless some form of synchronization

· pulse lengths given a hardware memory limit, but IRS is used to time-align data capture with the excitation
has a slight advantage in terms of odd-order distortion signal.

immunity. Tosummarize,we havenotedthat, for a givenrecov-
Consider anMLS ofperiodL samples. Iftwomeasure- ered impulse response length, inverted-MLS and IRS'

ments were made of a system where the second measure- techniques possess identical measurement and cross-cor-

ment uses an inverted excitation, then the minimum pos- relation times. Given a hardware memory limit, the two
sible measurement time is 4L. This is because for the techniques have the same maximum recoverable impulse
noninverted measurement, L samples must precede data response length. Both inverted-MLS and IRS methods

capture so that the system can settle to steady-state con- exhibit complete immunity to even-order nonlinearity,
ditions, while a similar settling period of L samples must but IRS has a small advantage in terms of odd-order
precede the inverted measurement. An inverse-repeat distortion immunity.
sequence generated from an MLS of period L results in
an IRS of length 2L, hence the minimum measurement CHinS DUNN, AES Member

time for IRS is also 4L. Department of Electronic and Electrical Engineering
Blome 5 has recently shown how a 2L-point IRS cross King's College

correlation can be executed with a single (L + 1)-point London, UK
fast Hadamard transform (FHT). Such a cross-correla-

tion procedure would only recover the first L samples
of the true 2L-point IRS cross correlation, but since ttie Further Comments 6
second L samples of the IRS cross correlation are simply I thank Dr. Dunn for his reply to my comments. I
an inverted version of the first L samples, this is of feel, however, that my main point still needs to be reiter-
no consequence. Blome's finding suggests that cross- ated. The quite correct conclusion drawn by Dunn and
correlation times for the inverted-MLS and IRS ap- Hawksford, namely, that MLS measurements of systems
proaches are equal, containing odd-order nonlinearities fail to completely

In our paper I we suggested that, compared to MLS, reject those nonlinearities regardless of the sequence
IRS suffers from a halving of maximum measurable im- length, assumes a Volterra-series-based definition of the

pulse length, given a hardware memory limit. However, error impulse response. If one changes to a Wiener-
using Blome's IRS cross-correlation routine with a mi- series-based definition, this conclusion no longer holds.

nor modification, a 2L-point IRS measurement can re- To be more precise, let's define the error impulse re-
cover an L-point impulse response using only L memory sponse first in terms of the Volterra series and then in
locations for data capture. Hence maximum recoverable terms of the Wiener series. The definition in terms of
impulse lengths are identical for MLS, inverted-MLS, the Volterra series is: 1) form the Volterra-series expan-
and IRS measurement approaches, sion of the nonlinear system to be measured, 2) drop all

Although the inverted-MLS method exhibits complete terms higher than first order, 3) subtract the remaining
immunity to even-order nonlinearity, odd-order distor- first-order (linear) term from the measured MLS re-

tion immunity is identical to that obtained with astan- sponse, and then 4) after cross correlation, what remains
dard MLS measurement. However, we showed _that for is the residual (unrejected) nonlinear distortion. The
systems where the bandwidth is significantly lower than definition in terms of the Wiener series is very similar:
the sampling frequency of the measurement system, IRS 1) form the Wiener-series expansion of the nonlinear
has some odd-order distortion immunity advantage over system to be measured, 2) drop all terms higher than
MLS. The simulations included in the paper (Table 1, first order, 3) subtract the remaining first-order (linear)
p. 320) of a 1-kHz FIR low-pass filter measured at a term from the measured MLS response, then 4) after
sampling rate of 44.1 kHz indicated an odd-order distor- cross correlation, what remains is the residual nonlinear

tion immunity advantage for IRS that increased with the distortion. Note here that a nonlinear system with mem-

5 C. A. Blome, private communication (1993). 6 Manuscript received 1993 December 6.
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ory as described by Eq. (14) l does indeed exhibit a truncating the impulse response recovered from cross
delayed "gain-error" spike in the Volterra-series-based correlation.
error impulse response, which must therefore be re- 2) If a Volterra approach to nonlinearity is adopted,
garded as a nonlinear artifact. Under the Wiener-series then "MLS methods lack complete immunity to odd-
definition, however, even for nonlinear systems with order nonlinearities .... In that case, however, it is
arbitrary amounts of memory, this is no longer the case. only fair to point out that this same conclusion applies
The first-order term of the Wiener series expansion eas- equally well to other commonly available measurement
ily accommodates such a delayed gain error or, in fact, techniques .... "

any effect that can be described by a purely linear sys- 3) Although linear transfer-function measurements
tern, and so this delayed gain-error spike will no longer performed using inverse-repeat sequences exhibit eom-
appear in a Wiener-series-based error impulse response, plete immunity to all even-order nonlinearity, this effect
In this sense the Wiener series is a more realistic descrip- can also be obtained by performing two MLS measure-
tion than the Volterra series because the former, unlike ments, where the second MLS excitation is an inverted

the latter, includes in its higher order terms only those version of the first, and subtracting the resultant impulse
effects that absolutely cannot be described by a purely responses from one another. We term this method the
linear system, no matter how complex. "inverted-MLS" approach.

I totally agree with the authors' statements regarding In the authors' reply to this first communication we
inverted-MLS versus IRS measurements. There is, how- dealt with the first two of these points, albeit briefly, and
ever, a significant advantage to the inverted-MLS proce- without reference to the alternative Wiener and Volterra
dure if the object is to measure distortion rather than to theories of nonlinearity, by discussing MLS distortion
merely reject it. By computing the odd- and even-order immunity for odd-order nonlinearity with memory. We
PIR sequences it becomes possible to compute the odd- will consider this matter in more detail here. As for the

and even-order coherence functions (or the related inco- last point, although we acknowledged that an inverted-
herence functions), whereas with the IRS method the MLS approach to linear transfer-function measurement
even-order Volterra terms (as well as the even-order does indeed exhibit complete immunity to even-order
Wiener terms) are totally rejected from the start and can nonlinearity, we suggested that, from a distortion immu-
never be recovered, not unlike absolute polarity, nity perspective, inverse-repeat sequences possess supe-

Note also that to avoid confusion and to be very pre- rior characteristics in terms of odd-order distortion
cise, the term "coherence function" should actually read immunity.
"Wiener coherence function" since coherence measure- In the most recent communication Rife again spends
ments using traditional dual-channel analyzers implicitly some time describing the differences between Volterra
assume a Wiener-series definition of nonlinearity. For and Wiener theories of nonlinear systems. As for invert-
example, if one were to actually measure the authors' ed-MLS techniques, Rife further points out that such
example system [the one containing the delayed gain- measurements are capable of distinguishing between
error nonlinearity described by Eq. (14)] t with a standard odd- and even-order nonlinearity, unlike inverse-repeat
dual-channel instrument, it would show a lower incoher- sequences where all even-order nonlinearity is com-
ence (that is, lower distortion or higher coherence) than pletely rejected in the PIR recovered from cross correla-
would have been predicted based on the Volterra-series tion. While this is true, the intent of the original paper _
expansion of that system, that is, by the ratio of the was to study distortion and noise immunity in linear
power in the sum of all its higher order (presumably, transfer-function measurements rather than the ability to
distortion-containing) terms to its total power, distinguish between different types of nonlinearity.

There is also the question of how valuable a measure-
DOUGLASD. RIFE, AES Fellow ment of total even-order or total odd-order distortion is,

DRA Laboratories since although it is well known that, from a psycho-
Sterling, VA20165, USA acoustic perspective, a given amount of odd-order non-

linearity tends to be more annoying than the same
amount of even-order distortion, such measurements

Authors' Reply to Further Comments ? cannot (yet) accurately distinguish between low-order
We would once again like to thank Mr. Rife for his and high-order distortion. Hence an inverted-MLS mea-

interest in our paper._ In his 1993 November communi- surement of even-order nonlinearity could not distin-
cation on this subject, Rife raised several points: guish between second-order and sixth-order distortion,

1) If a Wiener approach to nonlinearity is adopted, although the latter would be far more annoying in an
then "MLS measurements do in fact completely reject audio sense.

all nonlinear distortion of finite order in the limit as the We now progress to a discussion of the main points
MLS period goes to infinity." This statement contradicts raised by Rife, concerning the differences between Wie-
the authors' finding,_ where we showed that for the spe- ner and Volterra theories of nonlinearity, and how they
cific case of odd-order nonlinearity with memory, MLS relate to distortion immunity in MLS measurements. We
distortion immunity cannot be indefinitely increased by should point out at this stage that the following argu-

ments do not change any of the findings in our paper, _
7 Manuscript received 1994 January 12. which we feel remain essentially correct, but should be
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seen as an addendum which may aid in the understanding by third-order distortion at a relative level of 0 dB.

of MLS distortion immunity. Referring to our Eq. (2), this nonlinearity can be writ-
We completely agree that, from a Wiener perspective ten as

of nonlinearity, MLS measurements completely reject
all nonlinearity given a long enough sequence period, d{xf(n)} = [xf(n)] 3 . (1)
However, we do not agree that the Wiener approach of
analyzing nonlinearity is the most appropriate when it Note that the error due to nonlinearity is spread ap-
comes to linear transfer-function measurement in audio proximately evenly in the tail of the impulse response.
systems. This is not to say that we favor a Volterra Fig. 2 shows the first 256 samples of this corrupted
description of nonlinear distortion when analyzing such impulse response, where the peak of the impulse re-
measurements. In fact, we feel a flexible position which sponse occurs at approximately 110 samples. Fig. 3 il-
considers both approaches to be most appropriate, lustrates the first 256 samples of the impulse error due

If a Volterra description of nonlinearity is adopted in to nonlinearity, where a relatively large error peak is
linear transfer-function measurement of weakly nonlin- coincident with the linear impulse response at 110 sam-
ear systems, then any component of the recovered im- ples. In fact this large peak is a scaled version of the
pulse response which is due to nonlinearity is classed linear impulse response, hence it simply affects a gain
as a nonlinear artifact, even if it is coincident with and error in the measurement and does not corrupt the shape
of the same shape as the linear impulse response--the of the derived transfer function. We described this gain
type of error which, for example, is caused by memory- error in Eq. (6),] and removing the gain-error component
less, odd-order nonlinearity in an MLS measurement, from the error signal results in a normalized error se-
A Volterra definition of distortion is in this latter case quence which is essentially evenly distributed across
unattractive since it includes errors due to nonlinearity the measurement period. The first 256 samples of the
which do not change the shape of the recovered impulse normalized error sequence in this example are shown
response, only its relative magnitude--a "gain change" in Fig. 4, characterized by the absence of any peak at
which is not of great significance in loudspeaker mea- 110 samples.
surement, for example. (This concept is discussed in Now consider the effects of nonlinearity in the fre-
more detail in our paper, l) However, if the test system quency domain. Fig. 5 shows the magnitude response
is subject to odd-order distortion with memory, then an of the FIR filter used in the simulation, where the pass-
MLS measurement of the system will contain a relatively band is essentially flat. Fig. 6 shows the magnitude re-
large error spike in the recovered PIR that is not coinci- sponse obtained by Fourier transforming the whole im-
dent with the linear impulse response. Such a delayed
error spike must change the shape of the magnitude

response which is obtained by Fourier transforming the J '""'--'"'"'_'" ........,...f_

PIR, and hence must be of significance when considering
the distortion immunity of the measurement. In this case
the Volterra definition of nonlinearity is appropriate,
unlike the Wiener description, which considers any such ""
first-degree G functional to be part of the linear sys- _

tem response. _
We feel that the following simulation examples aid lan understanding of the differences of odd-order nonlin-

earity with and without memory. First consider the PIR -.
shown in Fig. 1 obtained from a 4095-point MLS mea- _'_ _'_ 9'6 ,_B ,;9 ,_2 2_
surement of the FIR 1-kHz low-pass filter described in Sample_

our paper, _where the measurement has been corrupted Fig. 2. PIR.

'T'

L
,x:

t.2 -

Samples Samples

Fig.1.PIR. Fig.3.PIRerror.
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pulse sequence shown in Fig. 1;the nonlinearity has had is considered to be a benign error, since it does not
the effect of raising the observed passband gain of the change the shape of the recovered linear transfer func-
filter, and also of superimposing a "noise" upon the tion, then this example of MLS distortion immunity with
measured response. Note, however, that the shape of memoryless nonlinearity clearly indicates that a Wiener
the linear filter is preserved in the corrupted measure- approach to classifying nonlinear errors is appropriate.
ment. Fig. 7 shows a second magnitude response ob- We now consider a second simulation example, where
tained from the same impulse response shown in Fig. third-order distortion with memory corrupts the mea-
l, but truncated to 256 samples. Although the smaller surement. Each term input to the nonlinearity is delayed
number of samples has reduced the frequency resolution by 40 samples, that is,
somewhat, the truncation has also reduced the noiselike

error due to nonlinearity--behavior that is commensu- d{xf(n)} = [xf(n - 40)] 3 . (2)
rate with the idea that MLS distortion immunity in-
creases for a given analysis window length as the MLS Fig. 8 shows the first 256 samples of the PIR obtained
period increases. The gain change within the filter pass- from a 4095-point MLS measurement of the same FIR
band due to the nonlinearity is also evident, and if this filter used in the first simulation example, while Fig. 9

0.16

""

-0.1

.'2 .'_ 9'. ,_0 ,;o ,_2 2_. ....... _ ' ....... _ '
Samples Frequency kHz

Fig. 4. Normalized PIR error. Fig. 7. 256-point FFT.

FILTE[_

3

2

1i
m 0

-3

-4

-5

.°

Frequency kHz Samples

Fig. 5. 4096-point FFT. Fig. 8. PIE.

PlR

'--."m_ _ 1.20 ................ '-"*'---* -'--- -***- *_-2
a: '

-3

-5

.2

....... i ........ ?o ' o'2 _'_ 9'_ _o do 1_2 _.
Fr-equenc_ kHz Samples

Fig. 6. 4096-pointFFT. Fig. 9. PIRerror.
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shows the error in this measurement due to nonlinearity, memory. Hence the Wiener approach to nonlinear error
The error peak is clearly delayed by 40 samples relative analysis in MLS measurements is in this case invalid,
to the peak of the linear impulse response, and this delay and in fact the Volterra approach is more attractive here.
is a direct consequence of memory within the nonlinear- Rife pointed out that if a Volterra definition of nonlin-
ity. Because the linear and error peaks are noncoinci- earity is adopted, then MLS methods lack complete im-
dent, then normalizing for gain change results in very munity to odd-order nonlinearities, but that this conclu-

little change in the time-domain error signal (Fig. 10). sion applies equally well to other commonly available
The delayed error peak due to nonlinearity in this exam- measurement techniques. While we agree with this state-
ple results in a change in the shape of the linear transfer ment for memoryless nonlinearity, we believe it is not
function obtained from the PIR, Fig. 11 showing a peak true for odd-order distortion with memory. Consider,

in the magnitude response at approximately I kHz and for example, a TDS measurement with a very fast sweep
a trough at 500 Hz, as well as a superimposed noiselike rate--here all error terms due to nonlinearity with mem-
error also observed in the first (memoryless nonlinearity) ory will be at different instantaneous frequencies relative

example. Importantly, truncating the PIR to 256 samples to the linear term, and if a filtering operation with good
(Fig. 12) shows a reduction in noise due to nonlinearity, frequency discrimination is employed, then such errors
but the shape of the magnitude response remains cor- can be distinguished from the linear term. Here the es-
rupted within the filter passband because the relatively sential difference between TDS and MLS techniques
large delayed error peak has not fallen outside the analy- is that the instantaneous frequency of a TDS stimulus
sis window. In fact, in this example no truncation changes with time, while for MLS all frequencies are
scheme can effectively remove the magnitude response present all of the time.

corruption due to nonlinearity without also truncating We believe that it is easy to misunderstand these ideas
the linear component of the PIR recovered from cross if one sticks too rigidly to a theoretical concept of distor-
correlation. Although this example is somewhat con- tion immunity. Rife states that "... in a Wiener-series
trived in that the nonlinearity has been selected to result sense (meaning in this context the best-fit linear approxi-
in a large error spike which occurs in the same region mation to a given nonlinear system), MLS methods do
as the linear component of the PIR, it does illustrate the in fact reject all nonlinear distortion of finite order in
fact that MLS distortion immunity cannot be indefinitely the limit as the MLS period goes to infinity .... "Al-
enhanced by increasing the MLS measurement period though a truncated MLS measurement, which includes
when the nonlinearity is of odd order and contains some delayed-error spikes due to odd-order distortion with

memory, may indeed result in the best-fit linear approxi-
mation to that nonlinear system for a single measure-

_'_ _.........................._/../h.......................... ment, it is wrong to conclude that the truncated analysis

window contains only linear components, even in the
limit as the measurement period approaches infinity. It
iseasyto seethatdelayederrorspikesduetononlinearity
cannot be linear components of the PIR if one considers

whathappensfor,say,acubicnonlinearitywithmemory
t astheamplitudeofthestimulusexcitingthenonlinearity
/ decreases.Thisis shownin a thirdexample(Fig. 13)

I using the same filter and nonlinearity as in the second
example, but where the MLS amplitude input to the

-l. _'_ _'4 9'_ 1_8 do i_ _4 filter has decreased by approximately 6 dB, and the PIR
s_:_ recovered from cross correlation has been scaled to take

into account this change in stimulus amplitude. NoteFig. 10. Normalized PIR error.
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Fig. 11.4096-pointFFT. Fig. 12.256-pointFFT.
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........... pi? sion of the paper stated that conical elements converged
more quickly than cylindrical elements when used to
model general horn contours. The argument for the supe-
riority of the conical elements in modeling general horn

_-_,._.,.._,-s--_ contours is not justified by investigating the convergence

-, , , ,'-, ,,, 1 of conical elements in modeling a conical horn.

-2 Conical sections are presented as "spherical-wave"
'_ -2 elements and cylindrical sections are presented as

"plane-wave" elements. It is true that conical elements
-4 may be used for both spherical-wave and plane-wave
-_ modeling, but no number of elements will cause a plane-

, ',b ' wave field to converge to a spherical-wave field. It does
Fr equencq kHz

not seem relevant to compare the two types of elements
Fig. 13. 4096-point FFT. unless the theories are being compared with measured

data to verify that the experimental results are best pre-

that the magnitude-response shape has again been cor- dieted assuming plane wavefronts or spherical wave-
rupted by the delayed error spike, but the degree of fronts.
corruption is not as severe as in Fig. 11. In fact, with Useful references related to the topics contained in
this particular example the shape of the recovered PIR Mr. Mapes-Riordan's paper can be found in the litera-
changes as the stimulus amplitude changes, and this ture. The topic of transmission-line modeling of horn
behavior is maintained even if the recovered PIR is trun- loudspeakers was studied by McLean et al.,l° who dem-

cated and the period of the MLS tends toward infinity, onstrate the utility of transmission-line modeling for pre-
However, this behavior is inconsistent with the notion dieting the acoustic impedance at the throat of horns.

that a measurement which exhibits complete distortion Thermoviscous losses are included, and the numerical
immunity results in a linear transfer function whose results are compared with laboratory measurements. The
shape is invariant with stimulus amplitude, original idea of using lumped transmission lines for mod-

To summarize, for memoryless odd-order nonlinearity cling acoustic horns should be credited to A. G. Web-
an MLS measurement recovers a PIR which contains an ster, who also presented explicit expressions for the

error spike of the same shape as and coincident with the transmission matrices of both cylindrical and conical
linear component of the impulse response. Therefore this horns (although in an antiquated notation) in his paper
error merely results in a gain change in the measurement, on acoustic impedance. ]l Also, a method that may prove
Hence for all even-order and memoryless odd-order non- useful for studying the convergence of various horn ele-
linearities, a Wiener description of nonlinearity is appro- ments is presented by Bonder, ]2 who uses the approach
priate--which implies that an MLS measurement ex- to find the number of resonances in a horn.
hibits complete immunity to these types of distortion

as the MLS measurement period approaches infinity. JOHNT. POSTANDELMERL. HIXSON
However, for odd-order nonlinearity with memory, the Electricaland Computer Engineering Department
error spike is delayed relative to the linear response, and University of Texas, Austin, TX 78712, USA
hence changes the shape of the linear-transfer function
recovered from the measurement. Under these circum-

stances a Volterra approach seems more appropriate in . Author's Reply 13

describing nonlinearity, in which-case MLS distortion I will address two issues brought up by John T. Post
immunity cannot be indefinitelyqn_reased by increasing and Elmer L. Hixson in their response to my paper on
the measurement period. "- horn modeling. First, they question why more than one

conical element is needed to model a conical horn. Sec-

CHRIS DUNN,AES Member ond, they interpret part of my conclusion to mean that
Department of Electronic and Electrical Engineering

King's College
London, UK 9 D. Mapes-Riordan, J. Audio Eng. Soc. , vol. 41, pp.471-484 (1993 June).

l0 j. S. McLean, J. T. Post, and E. L. Hixson, "A Theoreti-
COMMENTS ON "HORN MODELING WITH cal and Experimental Investigation of the Throat Impedance
CONICAL AND CYLINDRICAL TRANSMISSION- Characteristics of Constant Directivity Horns," J. Acoust. Soc.
LINE ELEMENTS ''s Am., vol. 92, pp. 2509-25,.26 (1992 Nov.).u A. G. Webster, "Acoustical Impedance, and the Theory

of Horns and of the Phonograph," Proc. Nat. Acad. Sci., vol.
In the above paper, 9 Mr. Mapes-Riordan used 100 000 5, pp. 275-282 (1919), read in 1914December at the meeting

conical transmission-line elements to model a conical of the American Physical Society at Philadelphia. Reprinted
in R. B. Lindsay, Ed., BenchmarkPapers in Acoustics, vol.

horn. We do not understand why more than one conical 4, Physical Acoustics (Dowden, Hutchinson & Ross, Strouds-
element is needed to model a conical horn. The conclu- burg, Pa., 1973).

12L. J. Bonder, "The n-Tube Formula and Some of Its
Consequences," Acustica, vol. 52, pp. 216-226 (1983).

8 Manuscript received 1994 January 3. i3 Manuscript received 1994 January 26.
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