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ABSTRACT

Recent work has shown that higher-order single-bit sigma-delta modulators suffer from low-level artifacts
such as idle tones and noise modulation. Techniques that have been proposed to reduce or eliminate
these errors include the application of dither inside the one-bit quantiser loop, and selecting a loop filter
which makes the modulator chaotic. This paper compares the efficacy of these two approaches by
simulating high-resolution sigma-delta modulators suitable for audio-conversion applications.

1  INTRODUCTION

A perfect analogue-to-digital (AD) or digital-to-analogue (DA) conversion process would convert a signal
from one domain to the other without introducing either linear errors (that is, magnitude and phase-
response abberations within a specified passband) or nonlinear errors (noise and distortion). While linear
errors in modern converters can be made to be vanishingly small, quantisation theory tells us that any
conversion process must contribute some degree of nonlinear error, hence a fundamental issue which
must be addressed when assessing the quality of a conversion process is deciding what represents an
acceptable degree of nonlinearity. As far as the psychoacoustic significance of conversion errors in audio-
system AD and DA processes is concerned, a hierarchy of different forms of nonlinearity can be made [1].
Beginning with the least-objectionable form of nonlinearity, ADC and DAC nonlinear errors can be broadly
classified within the following groups:
• A constant noise floor which is invariant with input signal level and spectral content. This type of error

is relatively benign.
• Noise modulation, where the noise floor of the test device changes as the input signal changes.

About 1 dB of noise modulation can be detected under critical listening conditions, if the noise floor of
the device is above the threshold of audibility at any audio frequency [1].

• Distortion due to a nonlinear input-output transfer function - that is, the type of error which manifests
as distortion harmonics of a sinusoidal stimulus. This is the most objectionable type of nonlinearity,
especially if the distortion is of high order [1]. Also belonging to this class of nonlinearity are error
tones which are not harmonically related to the stimulus frequency, such as idle tones in sigma-delta
modulators.

For real-world conversion processes the target performance is a constant noise floor which is invariant
with input signal characteristics (up to the point of overload). Hence noise modulation and distortion are
both forms of nonlinearity which are undesirable and, if possible, avoided.

It is well known that quantising a signal represented in a pulse-code modulation (PCM) format results in a
quantisation error which is spectrally white if the signal input to the quantiser is complex and has an
amplitude much higher than the quantisation step size. However, if the input signal amplitude becomes
small, or its frequency has a simple relationship to the system sampling frequency, then quantisation
distortion results where both harmonic and anharmonic error tones can be seen at the output of the
quantiser. Such nonlinear errors can be extremely disturbing from a psychoacoustic perspective.
Fortunately the quantisation error can be made benign by the appropriate use of dither before the
quantiser (Fig. 1); addition of triangular-probability-density (TPD) dither of peak amplitude equal to the
PCM quantisation step size results in a quantisation error whose spectral power density is completely
invariant with input signal characteristics [2], [3], [4]. The correctly-dithered quantisation process therefore
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does not suffer from either noise modulation or distortion. Fig. 2(a) shows the frequency-domain output of
a dithered 16-bit PCM quantiser for a 1 kHz sinusoidal input of peak amplitude -12 dB with respect to full
scale (that is, -12 dBFS), indicating a complete absence of distortion tones. This simulation result was
obtained by averaging 100 4096-point frames. It can be shown that the noise-floor penalty for introducing
TPD dither is 4.8 dB, while for a quantiser with more than a few bits the introduction of dither does not
significantly reduce the overload point of the quantiser. A further benefit of dithering a PCM quantiser lies
in the ability to recover, without distortion, signals with amplitudes well below the noise floor of the
conversion process. This is not possible with an undithered quantiser, where low-level input signals are
not linearly coded. An example of resolution below the noise floor in a correctly-dithered PCM quantiser is
shown in Fig. 2(b) where a -100 dBFS sinusoid input to the quantiser is clearly resolved in the output
spectrum without distortion, even though the input amplitude is well below the (total) noise floor of the
quantisation process at -93.3 dBFS.

An "ideal" PCM quantisation process, where the quantisation intervals are equally spaced and the correct
dither signal is used, therefore introduces a nonlinear error which can be considered relatively benign
from a psychoacoustic perspective. Ideal PCM quantisation can be implemented with relative ease in the
digital domain - for example, requantisation operations in a digital signal processor (DSP). However,
practical multi-bit PCM quantisers which interface with the analogue domain suffer from the effects of finite
component tolerances, which tend to introduce nonlinearity to converter transfer characteristics. Such
nonlinearity manifests as distortion and noise modulation at the converter output, even if the conversion is
correctly dithered [5]. Practical multi-bit PCM-conversion linearity thus deviates from the ideal of a noise
floor which is invariant with input-signal characteristics.

One method of reducing the component matching requirements of multi-bit converters is to oversample
the signal input to the quantiser, which for a given converter resolution allows fewer quantiser bits. The
number of bits can be further reduced by noise-shaping the quantisation error away from the signal band.
Oversampling and noise shaping can be viewed as techniques which achieve high resolution by trading
quantiser accuracy (lower number of bits) for circuit speed (higher clock frequencies). Ultimately, the
processes of oversampling and noise shaping can result in high-resolution converters using only a single-
bit quantiser, known as sigma-delta modulators (SDMs). An excellent introduction to sigma-delta
techniques is provided by Candy and Temes in [6], while the following discussion must be necessarily
brief. Fig. 3(a) shows a block diagram of an SDM, where the single-bit quantiser is embedded in a
negative feedback loop including loop filter H.

If the single-bit quantiser is modelled as an additive quantisation noise source E [Fig. 3(b)], then the output
can be written in the z-domain as

Fig. 1. Dithered PCM quantiser.

.E(z)  
H(z)  + 1
1 + X(z) 

H(z)  + 1
H(z) = Y(z)  (1)
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Fig. 2. Output spectra from correctly-dithered ideal PCM quantiser with 1
kHz input at (a) -12 dBFS, indicating complete absence of distortion tones,
and (b) -100 dBFS, showing resolution below the noise floor of the
quantisation process.

Fig. 3. (a) General sigma-delta modulator. (b) Equivalent quantiser model.

(a)

(b)

(a)

(b)
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The output has an in-band quantisation noise component which is determined by the noise-shaping
function of the modulator,

High resolution in the signal band can be achieved for a given oversampling ratio by using a high-order
loop filter H. Design strategies for determining H are discussed in Sec. 2.

The advantages of moving to a single-bit quantiser in sigma-delta modulators are that finite component
tolerances in constructing a practical quantiser result in gain error and dc offset and not differential
nonlinearity. Practical high-order SDMs thus achieve high resolution with very low distortion, at least for
high-level sinusoidal inputs. Fig. 4(a) shows a simulated output spectrum for a fourth-order modulator with
a 1 kHz sinusoidal input at -12 dBFS. As for all of the simulation results presented in this paper, the
oversampling factor is set to 64, and the sampling frequency fs = 2.8224 MHz - this yields a baseband of 0
kHz to fB = 22.05 kHz, equivalent to consumer digital audio systems with a sampling frequency of 44.1
kHz. The signal-to-noise ratio (SNR) in this example is 106 dB, and the output spectrum can be seen to
be almost completely free of distortion tones. Fig. 4(c) shows that high resolution is maintained below the
noise floor when a -125 dBFS signal is applied to the converter. Results like these have led many to
believe that high-order SDMs behave as virtually ideal converters. However, recent research has
indicated that at moderate input amplitudes, sigma-delta converters can be corrupted by idle tones and
noise modulation, and thus deviate from our notionally perfect converter. Fig. 4(b) shows the output
spectrum from the same modulator with a 1 kHz input at -47 dBFS, where low-level tones can be seen
rising above the noise floor at several frequencies.

Techniques for eliminating idle tones in SDMs include the use of dither, and making the converter chaotic.
In this paper we examine the efficacy of these techniques, and focus upon the associated dynamic-range
penalties involved in successfully linearising SDMs. The study commences in Section 2 with a discussion
of optimisation techniques that can be used to maximise resolution in SDMs of a given order and
oversampling ratio. Section 3 examines SDM idle-tone phenomena in greater detail, and reviews
techniques for revealing their presence in high-resolution converters. Sections 4 and 5 examine dithered
and chaotic sigma-delta modulators respectively, and use an optimisation technique to determine
dynamic-range penalties for SDM linearisation. 

2  OPTIMAL SIGMA-DELTA MODULATORS

High-resolution sigma-delta modulators require as much as possible of the quantisation noise to be
removed from the baseband - a requirement which implies that the noise-shaping function NS be
highpass, and hence the loop filter H be lowpass. If the noise-shaping response is described in terms of z-
domain poles pi and zeros zi, then for an nth-order modulator,

. 
H(z)  + 1
1 =  

E(z)
Y(z) = NS(z)  

0 = X(z)
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Fig. 4. Output from fourth-order SDM with 1 kHz input at (a) -12
dBFS, (b) -47 dBFS, and (c) -125 dBFS.

(a)

(b)

(c)
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Chao et al. [7] developed a loop filter structure suitable for high-order SDMs, where flexibility in specifying
the noise-shaping response of the modulator is achieved by embedding cascaded integrators within a
recursive feedback loop. Fig. 5 shows a modified version of Chao's structure, where the noise-shaping
response is determined by feedforward coefficients ai feeding the single-bit quantiser, and feedback
coefficients bi. This loop-filter structure has been used in several commercially-available SDM ADCs and
DACs [8], [9], and was used to generate all of the simulation results presented in this paper. It is easy to
show that

. 
b + 1)-(zb +  + )1-(zb + )1-(zb + )1-(z

a + 1)-(za +  + )1-(za + )1-(za = H(z)  
n1-n

2-n
2

1-n
1

n
n1-n

2-n
2

1-n
1

⋅⋅⋅

⋅⋅⋅
                                                

        (4)

Combining Eqs. (2) and (4), the noise-shaping function can be determined in terms of ai and bi,

Comparing Eqs. (3) and (5), it is clear that noise-shaping zero locations zi are solely dependent upon
feedback coefficients bi, while pole locations pi depend upon both ai and bi.

Fig. 5. Sigma-delta modulator with cascaded-integrator loop-filter structure.

Several workers have investigated the effect that the noise-shaping characteristic has upon the dynamic
range, stability and overload characteristics of sigma-delta modulators [7], [10], [11]. A popular choice for
the noise-shaping pole locations is a Butterworth configuration, such that, for a given oversampling factor,
pi are determined by a single variable - the Butterworth -3 dB cutoff frequency, fc. If the zeros zi all reside
at dc then the noise-shaping response is Butterworth highpass (Fig. 6). For dc zeros, zi = 1, which for the
cascaded-integrator filter structure corresponds to the feedback coefficients bi being set to zero, while the
feedforward coefficients ai are determined by fc. Fig. 7 shows the highpass-Butterworth noise-shaping

. 
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magnitude response obtained when fc = fs/25 for a fourth-order modulator. Note that the high-frequency
gain of the noise-shaping response is greater than 0 dB - that is, the high-frequency quantisation noise
seen at the output of the system is amplified by the noise-shaping action. This high-frequency gain effect
increases as the cutoff frequency of the Butterworth filter increases, and tends to reduce the stability of the
system.

Fig. 6. Noise-shaping pole and zero positions for fourth-order
SDM with highpass-Butterworth noise-shaping response.

Fig. 8(a) shows the noise-shaping magnitude response across the baseband, clearly indicating the
presence of noise-shaping zeros at dc. A technique that can be used to increase the SNR of the
modulator is to move the noise-shaping zeros away from dc and distribute them across the baseband in
conjugate pairs [7]. This corresponds to non-zero feedback coefficients bi in the cascaded-integrator loop-
filter structure. Schreier [11] has determined the zero locations which yield optimal signal-to-noise ratios at
the output of the modulator; Table 1 reproduces these results for modulator orders 1 to 4. Fig. 8(b) shows
the noise-shaping response for the fourth-order modulator with Butterworth poles (fc = fs/25) when the
zeros are moved from dc to these optimal locations. Fig. 9 shows the new zero positions on the unit circle
in the z-domain. This modulator is used for several simulations below, where it is referred to as the
"standard" fourth-order modulator.

Fig. 7. NS(f)| for fourth-order modulator with highpass-
Butterworth noise-shaping response.
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(b)

(a)

Fig. 8. |NS(f)| over baseband for fourth-order SDM with Butterworth
noise-shaping poles. (a) Thin trace - noise-shaping zeros at dc. (b)
Bold trace - distributed noise shaping zeros minimise baseband noise.

Fig. 9. Noise-shaping poles and zeros plotted in z-domain
for fourth-order SDM where zeros have been optimally
distributed across the baseband.

Another way to increase the resolution of an SDM with Butterworth poles is to increase the cutoff
frequency fc [11], although such an action will also tend to compromise stability since the high-frequency
gain of NS increases, with a corresponding increase in the total noise power within the loop. A decrease

Table 1.Optimal noise-shaping zero locations.
Modulator
Order n

Zero frequencies,
normalised to fB

Zero frequencies for fB = 22.05 kHz
(kHz)

1 0 0

2 ± √(1/3) ± 12.7

3 0, ± √(3/5) 0, ± 17.1

4 ± √[(3/7) ± √{(3/7)2 - (3/35)}] ± 7.5, ± 19.0
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in the stability of an SDM system with Butterworth poles results in a lower value of xopt, the input amplitude
which yields the peak SNR from the modulator before the onset of large-amplitude oscillations. In general
there will be an optimal value of fc which yields the peak SNR obtainable from a modulator with a given
oversampling ratio and Butterworth pole locations. Schreier [11] describes a technique for empirically
determining this value by simulation, where xopt is found by applying a dc input to the modulator and noting
the value at which the modulator becomes unstable. Instability is detected by observing the peak value at
the input to the quantiser and noting the input amplitude xmax at which it exceeds a predefined value. The
instability criterion adopted in this paper, for modulators with normalised feedforward coefficients1 and 1-
bit quantisers whose outputs can take the values ±1, is the smallest dc input which causes the peak
quantiser input to exceed 5 for any sample within 105 oversampled time steps. Fig. 10 shows such a
simulation for the standard fourth-order modulator, where xmax = 0.71.

       (b)

       (a)

Fig. 10. Determining maximum stable input amplitude for standard
fourth-order modulator. (a) Bold trace - peak quantiser input as a
function of dc modulator-input amplitude. (b) Thin trace - SNR as a
function of peak sinusoidal input amplitude.

Once xmax has been determined, the peak signal-to-noise ratio SNRmax for the modulator is found by, as in
Schreier's study [11], applying a 1 kHz sinewave with peak amplitude xopt = xmax - 1 dB to the modulator,
and comparing the fundamental energy at the modulator output to the quantisation-error energy in the
frequency domain. To obtain adequate accuracy in the SNR calculation with relatively short simulation
times, the oversampled modulator output is decimated by a factor of 64 before transforming to the
frequency domain. Fig. 11 shows the decimation structure used in the simulations, where a 7-stage comb
filter precedes two half-band filters; this structure is relatively complex, but has a stopband rejection
performance which ensures that, in the most critical case, aliased out-of-band quantisation noise does not
increase the baseband noise-floor of the modulators by more than 0.05 dB. Fig. 10(b) shows how the
SNR of the standard fourth-order modulator varies with peak sinusoidal input amplitude, and indicates that
the SNR peaks at approximately xopt = 0.64. This result along with simulations performed on different
modulators vindicates the xopt = xmax - 1 dB input-amplitude criterion in determining SNRmax. Note that
determining xopt by observing input quantiser levels for dc modulator inputs requires far less simulation
time than directly calculating the signal-to-noise ratio as a function of input amplitude, where for the latter
approach a time-consuming decimation routine must be implemented for each SNR calculation.

1 Since single-bit quantisers are effectively sign-detectors, then SDM operation is invariant with scalings of the
feedforward coefficients ai. For all of the simulations presented in this paper, ai are scaled such that a1 = 1. This scaling
procedure is important to observe when determining amax by detecting peak values at the quantiser input, or in setting
dither amplitudes (see Sec. 4).
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This procedure, shown as a flow diagram in Fig. 12, allows the peak SNR ratio for a modulator with
Butterworth poles to be calculated as a function of the Butterworth cutoff frequency fc. It is a fairly
straightforward optimisation task to find fcopt, the Butterworth cutoff frequency which maximises the SNR
obtainable from the modulator. For the purposes of this paper, we shall term the modulator resulting from
such an optimisation an "optimal sigma-delta modulator." An optimisation routine was written to determine
fcopt using a 1-dimensional pattern search. The results of an optimisation for the fourth order modulator are
collated in Table 2, indicating that the peak SNR obtained from the optimal fourth-order SDM is
approximately 7 dB greater than the standard modulator with fc = fs/25. Note that the zero locations remain
fixed at their optimal locations as determined by Schreier [11], and hence the optimisation process does
not alter the values of the feedback coefficients bi. We use the optimisation process described in this
section to investigate characteristics of optimal dithered and chaotic SDMs in Secs. 4 and 5 respectively.

Fig. 11. Decimation structure used in simulations.

Fig. 12. Flow diagram for determining peak SNR from
SDM with Butterworth noise-shaping poles.

Table 2. Result of fourth-order modulator
optimisation.

Modulator Standard Optimal

fc/fs 0.04 0.0642

aopt,  dBFS -3.9 -8.4

SNRmax, dB 102.0 109.3

a2 0.313 0.492

a3 0.055 0.131

a4 0.0045 0.0157

b1 2.07e-3 2.07e-3

b2 2.07e-3 2.07e-3

b3 9.95e-3 9.95e-3

b4 4.98e-7 4.98e-7
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3  IDLE TONES AND NOISE MODULATION IN SDMs

It has been known for some time that low-order sigma-delta modulators suffer from noise modulation [12,
13], threshold effects [14], and, for certain input signals, low-level tones [15]. In many ways such non-
idealities are not surprising, since sigma-delta modulation, like undithered PCM quantisation, is a
deterministic mapping operation [16]. Low-order SDMs (n <= 2) have only a small number of state
variables, which for constant inputs tends to result in repeating bit patterns at the modulator output, and a
high degree of correlation between the input signal and quantisation noise is to be expected. However,
until recently it was generally believed that higher-order (n > 2) sigma-delta modulators did not suffer from
such nonlinear artifacts. For example, Chao et al. argue in [7] that the greater number of state variables
present in higher-order modulators lends a higher degree of randomisation to quantisation noise.
Nevertheless, in the same paper results are presented which show that a fourth-order modulator suffers
from at least 5 dB of noise modulation. We will now consider some of the techniques that exist for
quantifying noise-modulation effects and idle-tone behaviour in sigma-delta modulators.

In a study of idle-tone behaviour in low-order modulators, Ledzius and Irwin [17] show that, for constant
inputs, idle-tone frequencies are related to the modulator input amplitude xDC. Although the highest-
amplitude idle tones occur at frequencies close to half the sampling frequency, tones of significant
amplitude can also occur within the baseband. For an SDM with quantiser output levels ±1, an important
idle-tone occurs at a frequency given by

Consider the standard second-order modulator shown in Fig. 13 (α = β = 1); this modulator is
operationally equivalent to a cascaded-integrator SDM structure with the loop-filter coefficient set {a1 = 1,
a2 = 0.5, b1 = 0, b2 = 0}. Fig. 14(a) shows 256 samples of the ac component of the time-domain output
signal obtained for this modulator with OSF = 64 and xDC = 1/256. The quantisation noise can be seen to
be strongly periodic rather than random and, according to Eq. (6), should have an idle tone at frequency
fIT = 11.0 kHz. The frequency-domain representation of the modulator output shown in Fig. 14(b) indicates
7 idle tone frequencies within the baseband, including fIT.

.factor ngoversampli = OSF

,frequency baseband upper = 

   where

, OSF   2= 

= 

B

IT

f

fx

fxf  

BCD

SCD

(6)

Fig. 13. Second-order sigma-delta modulator. Standard modulator is achieved by
setting α = β = 1, while chaotic modulators require α > 1, and/or β > 1.
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Fig. 14. Output of standard second-order modulator for dc input of 1/256. (a) Time domain. (b) Frequency domain.

Given the presence of idle tones in a quantisation noise floor, visual examination of a single frequency-
domain noise-floor plot provides only a poor measure of whether the tones will be perceived as tonal or
not. Schreier [18] presents a technique for quantifying the tonality of quantisation noise, based upon
comparing the energy contained in the highest-amplitude FFT bins of the transformed noise signal to the
total error energy, hence deriving a "tonality index" for the noise floor. Alternatively several noise floor plots
can be arranged in a 3D format, where the eye is quite sensitive to detecting patterns in the noise floor
that remain obscure in single plots. Ledzius and Irwin developed such a method in [17], where SDMs are
subjected to dc-input sweeps and noise-floor spectra for several dc input levels are displayed in a single
graph. Fig. 15 shows such a simulation for the standard second-order modulator, with a dc input spanning
the range 0 -> 1/256. Each trace in the plot represents the power spectrum of the quantisation noise
obtained from a 4096-point FFT of the (decimated) modulator output signal. Fig. 15 clearly indicates an
idle tone with frequency fIT, increasing from dc to 11 kHz as the dc input level increases, and with an
amplitude well above the level of the noise floor2. Fig. 16 shows a similar simulation for the optimal fourth-
order modulator discussed in Sec. 2, where idle tones fIT and 2fIT can again be seen above the level of the
noise floor (note that the spectral notches observed in the noise floor at 7.5 kHz and 19.0 kHz are due to
the optimally-located noise-shaping zeros - see Table 1). This result clearly indicates that higher-order
modulators are not immune to undesirable idle-tone artifacts. As a point of reference, consider the 3D plot
shown in Fig. 17, where a dc-input sweep is applied to a TPD-dithered 16-bit PCM quantiser; other than
spectral ripples due to the finite number of FFT bins used in the simulation, the noise-floor can be seen to
be invariant with input signal level, with no idle tones visible. This result again indicates the near ideal
characteristics of correctly-dithered PCM quantisation, as discussed in Sec. 1.

2 Note that inadequate stopband performance of the decimation filter used in these simulations can cause misleading
results, since aliased high-frequency tones are indistinguishable from baseband tones. This potential problem is
avoided for the simulations presented in this paper by using the high-performance decimation filter structure shown in
Fig. 11, where high-frequency idle tones are attenuated by at least 250 dB.

(a) (b)
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Fig. 15. DC input sweep for standard second-order
modulator.

Fig. 16. DC-input sweep for optimal fourth-order sigma-
delta modulator.

Fig. 17. DC input sweep for dithered 16-bit PCM quantiser.
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In studies of dithered sigma-delta modulators, Norsworthy [19] and later Norsworthy and Rich [20] use an
autocorrelation technique to detect the presence of idle tones in SDM quantisation noise, and show that
the existence of idle tones corresponds to noise modulation when a modulator is subjected to a dc or
sinusoidal signal of varying amplitude. Hence a modulator which is free from idle tones should also be
free from noise modulation. The relationship between idle-tone artifacts and noise modulation has also
been observed by Risbo [21], and is further supported by simulation results presented below in Secs. 4
and 5. Fig. 18 shows how the total quantisation noise power of the optimised fourth-order modulator
changes as the amplitude of a 1 kHz sinusoid applied to the modulator input is ramped from -120 dBFS to
0 dBFS in steps of 1 dB. It can be seen that the quantisation noise energy of this modulator changes by
approximately 3.8 dB over the range of input amplitudes; following the brief discussion of noise-
modulation audibility in Section 1, this degree of noise modulation would be deemed to be audible under
critical listening conditions. Fig. 19 shows a reference plot for the dithered 16-bit PCM quantiser, which is
essentially free of noise modulation3; the small degree (less than 0.5 dB) of variation in the noise-floor
energy observed in this diagram is due to the finite number of FFT bins used in the measurement.

Given the presence of undesirable idle tones and noise modulation in sigma-delta modulators, even for
higher-order loop filters, there are several techniques that can be used to reduce or eliminate the problem:
• Increase the number of linearly-spaced quantiser steps.
• Increase the number of logarithmically-spaced quantiser steps.
• Introduce dither to the sigma-delta modulator.
• Make the sigma-delta modulator chaotic.
Unfortunately, increasing the number of quantiser levels mitigates against one of the fundamental benefits
of sigma-delta technology, that of achieving high resolution without the need for accurate component
matching.  Although multi-bit SDMs with linearly-spaced quantiser levels can be designed such that finite
component tolerances do not result in a high degree of correlation between the quantisation noise and the
input signal [22], such designs are extremely sensitive to clock-timing errors, or "jitter" [23]. An alternative
approach to multi-bit SDM design is to space the quantiser levels logarithmically, as recently described by
Ledzius and Irwin [17]. Although such designs appear to be immune to idle-tone phenomena and are also
relatively insensitive to component mismatches, they suffer from severe noise modulation.

3 As little as 1 dB noise modulation in any single critical bandwidth can be audible under critical listening conditions.
Hence plots such as Fig. 19 which show the total error energy to be invariant with input signal characteristics are a
necessary but not sufficient requirement for noise modulation to be inaudible.

Fig. 19. Noise-floor plot for dithered 16-bit PCM
quantiser with 1 kHz sinusoidal input.

Fig. 18. Noise floor plot for optimal fourth-order
SDM with 1 kHz sinusoidal input.
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In the remaining sections of this paper we will examine dither and chaos as strategies for linearising
sigma-delta modulation. The 3D dc-input sweep and noise-floor plot techniques described in this section
will be used to quantify the success of designs which aim to decorrelate quantisation error from input
signal characteristics.

4  DITHERED SIGMA-DELTA MODULATORS

In Sec. 1 we briefly discussed the use of dither signals to linearise PCM quantisation, where it was noted
that addition of the correct level of TPD dither increases the noise floor of the quantiser by 4.8 dB. Dither
can also be used to reduce noise modulation and idle-tone phenomena in single-bit sigma-delta
converters, where the dither action can be thought of as a phase-randomisation of idle tones such that
they are indistinguishable from the random component of the quantisation error. In this section we
investigate how effective dither is in eliminating idle tones in sigma-delta modulators, and quantify
dynamic-range penalties for implementing dither.

Although high-frequency squarewaves can be used to dither SDMs [24], [25], the most complete
elimination of idle-tone phenomena appears to occur when the dither signal is a random or pseudo-
random signal. Generation of such a dither signal is a simple matter in sigma-delta DACs, although in
ADCs it may significantly increase the complexity of the conversion system if the dither signal has many
levels. Norsworthy [19] has identified the primary design parameters that require attention in dithered
sigma-delta modulators:
• The optimal position at which to apply dither within the sigma-delta loop.
• The relative dither power required to decorrelate quantisation noise from input-signal characteristics.
• The dynamic-range penalty for implementing SDM dither.
• The best probability distribution for the dither signal.

Norsworthy [19], and later Norsworthy and Rich [20], describe how a pseudo-random dither signal added
to the input of the single-bit quantiser (Fig. 20) is conveniently noise-shaped by the noise-shaping action
of the sigma-delta loop, such that the reduction in baseband dynamic range due to the addition of dither is
minimised. Norsworthy has also addressed the question of the most effective dither amplitude to use.
Measurement results are presented in [20] for a prototype second-order modulator which showed how
addition of rectangular-probability-distribution (RPD) dither spanning ±0.5 - that is, half of the one-bit
quantiser output range - eliminated idle tones, at the expense of increasing the noise floor by 2 dB.
Simulations were performed in an attempt to confirm this result. The standard second-order modulator
described in Sec. 3 was dithered using a ±0.5 RPD noise, and stimulated with a dc input of 1/256. The
results shown in Figs. 21 and 22 indicate that idle tones are almost eliminated (these diagrams can be
directly compared against results for the undithered second-order modulator shown in Figs. 14 and 15).
When the modulator was stimulated using a 1 kHz sinusoidal signal, the noise-floor power increase due to
the addition of dither was found to range between 2 dB and 8 dB, depending upon the input amplitude.
The peak SNR obtainable from this standard second-order modulator was 6 dB lower with the addition of
dither.

Fig. 20. General SDM structure where dither is added to input
of 1-bit quantiser.
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Fig. 21. Standard second-order modulator with ±0.5 RPD dither and dc input of 1/256.
(a) Time domain. (b) Frequency domain.

As well as eliminating idle tones and noise modulation, correctly-implemented dither also has the ability to
eliminate low-level dead zones in lower-order modulators, so that low-amplitude input signals below the
level of the quantisation noise can be accurately resolved. Fig. 23(a) shows the output spectrum for the
standard undithered second-order SDM for a 1 kHz sinusoidal input signal at -115 dBFS; the quantisation
error is extremely tonal, and for input amplitudes below -140 dBFS the input signal is not coded at all (for a
discussion of dead-zone phenomena, see Naus and Dijkmans [14]). Fig. 23(b) shows the output spectrum
for the same input signal when the modulator is dithered with ±0.5 RPD noise; the sinusoidal input is now
resolved at the correct level without tonal distortion.

Generally, the higher the dither amplitude the more successfully idle-tones are removed from the
quantisation noise floor. Fig. 24 shows noise-floor spectra for the standard fourth-order modulator with
various levels of RPD dither and a dc-input of 1/256 (the traces have been vertically offset to aid clarity).
The amplitude of the fIT idle tone at 11 kHz clearly decreases relative to the random noise-floor
component as the dither amplitude increases, and is finally eliminated when the dither spans a range of
±0.375.

(a) (b)

Fig. 22. DC-input fade for standard second-
order modulator with ±0.5 RPD dither.
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Fig. 23. Output spectra for standard second-order modulator with 1 kHz input at -115 dBFS.
(a) Undithered. (b) Dithered.

For higher-order modulators (n > 2), the dynamic range penalty suffered when dither is implemented can
be greater than 6 dB. A simulated example of the SNR penalty to be paid for dithering a sixth-order
system is presented by Risbo in [26], where introduction of ±0.5 RPD dither reduces the peak SNR by 27
dB. Such large SNR reductions in dithered higher-order systems are partly due to the increase in noise
within the sigma-delta loop, but also because the addition of dither tends to reduce system stability,
requiring a reduction in loop gain and corresponding increase in baseband quantisation noise [21]. The
reduction in stability is indicated in Fig. 25, which shows the maximum amplitude occurring at the
quantiser input as a function of dc input level for the standard fourth-order modulator. The two traces in
this diagram correspond to undithered and ±0.5 RPD dithered modulators, and it is clear that the addition
of dither causes instability to be approached at lower input levels. Thus modulators whose loop-filter
characteristics are optimised for maximum dynamic range without dither often suffer from poor stability
when dither signals are introduced within the loop.

  (d)

  (c)

  (b)

  (a)

Fig. 24. Effect of RPD dither amplitude on standard fourth-
order SDM with dc input = 1/256. Modulator output spectra for
peak dither amplitudes (a) 0, (b) 0.125, (c) 0.25, and (d) 0.375.

(a) (b)
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(b)

(a)

Fig. 25. Peak amplitude at quantiser input as a function of dc
input amplitude for fourth-order modulator. (a) Bold trace: no
dither. (b) Thin trace: ±0.5 RPD dither.

In general, optimal dithered sigma-delta modulators - that is, dithered SDMs with loop filter characteristics
optimised for maximum dynamic range using the routine described in Sec. 2 - will suffer the lowest-
possible SNR penalties for dithering. Simulations were performed to determine minimum SNR penalties
for optimal RPD-dithered modulators of orders ranging from 1 to 5, where the dither amplitude was
increased in approximate steps of 1 dB until modulator linearisation was achieved; a modulator was
considered to be "linearised" if no idle tone artifacts were visible in 3D dc-input sweep plots, and noise
modulation was less than 1 dB for input signal amplitudes within the dynamic range of the modulator.

Table 3 shows the minimum RPD dither amplitudes required to linearise the simulated systems with
orders 2 to 54; note that the peak SNRs obtained for modulators optimised without dither agree quite well
with Schreier's results in [11], and hence verify the accuracy of the optimisation process described in Sec.
2. The results show that as the modulator order n increases, the dither amplitude required for linearisation
decreases - this trend has also been noted by Norsworthy [19], [20]. SNR penalties for linearisation
remain approximately constant with n, at 4 to 5 dB. Interestingly, these figures are close to the SNR
penalty paid for dithering a PCM quantiser (4.8 dB). Another study by the authors extending the results to
higher orders has shown that similar SNR penalties are paid for linearising 6th- and 7th-order systems
[27]. Note that such results are significantly lower than the figure of 27 dB obtained by Risbo in [26] for a
6th-order modulator. This discrepancy can be explained by the authors' use of optimisation techniques
and the use of many dither amplitudes to determine the minimum dither amplitude required for

4 Note that the 1st-order systems were not completely linearised for any of the dither levels tested.

Table 3.Dynamic-range penalties for optimal dithered SDMs.

SNRmax for optimal modulator (dB)Order
n

Minimum RPD
amplitude required
for linearisation undithered dithered

Dynamic range
penalty (dB)

2 0.4 75.8 71.3 4.5

3 0.28 93.6 89.2 4.4

4 0.25 109.3 104.0 5.3

5 0.2 121.6 117.4 4.2
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linearisation. Preliminary investigations indicate that SNR penalties for linearisation using dither do not
greatly change as the oversampling factor changes [27]. However, note that results presented in Table 3
are specific to SDMs with Butterworth noise-shaping poles and optimally-located zeros; results may differ
for modulators with alternative noise-shaping responses.

Experiments were also performed with alternative dither amplitude distributions, with some interesting
results:
• TPD-dithered systems tend to suffer slightly higher SNR penalties compared to RPD-dithered

systems - by approximately 1 dB. Thus while a triangular amplitude distribution is the correct dither
signal to use with PCM quantisation, RPD is to be preferred in sigma-delta modulation.

• High-pass TPD (HPTPD) dither can easily be formed by subtracting consecutive samples from an
RPD noise source [4], and, with a power spectral density which is skewed towards high frequencies
away from the signal band, appears an attractive candidate for SDM dither. However, experimentally
TPD and HPTPD dithers gave very similar performance in terms of their ability to linearise SDMs and
the resultant SNR penalties. Thus it would appear that the dither spectrum is not a critical factor in
dithering SDMs, perhaps because a one-bit quantiser represents a gross nonlinearity and thus
normal rules of superposition [4] are no longer valid. More important factors appear to be the
randomness of the dither signal, the dither amplitude, and the dither amplitude distribution.

• For higher-order systems (n ≥ 3), single-bit (BPD) dither can be successfully used with little or no
additional SNR penalty compared to RPD-dithered systems [28]. This is an important result, since
single-bit dither can easily be implemented in sigma-delta ADCs as a single switched capacitor at the
quantiser input, controlled from the digital domain.

As an example of the higher-order dithered modulators obtained following optimisation, Figs. 26 and 27
show simulation results for the optimal fourth-order SDM with ±0.25 RPD dither. No idle tones are
apparent in the dc-input fade (Fig. 26), while noise modulation is less than 1 dB (Fig. 27). The application
of dither has increased the noise floor of the modulator by between 5 dB and 8 dB (compare Fig. 27 with
Fig. 18), while the peak SNR obtainable from the modulator has decreased by 5.3 dB.

Fig. 26. DC-input fade for optimal fourth-order
modulator with ±0.25 RPD dither.
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Fig. 27. Noise floor of optimal fourth-order modulator with
±0.25 RPD dither. Input signal is 1 kHz sinewave.

As well as linearising the in-band quantisation noise floor, an appropriate level of dither also has the
beneficial effect of reducing high-frequency (>> fB) idle tones. This can be extremely important in practical
implementations of high-order sigma-delta modulators, where aliasing of high-frequency (HF) tones due
to circuit nonlinearities and coupling mechanisms can dominate baseband performance [29], [30]. Risbo
[21] has speculated that the presence of HF idle tones is intimately linked with baseband idle tones and
noise modulation - that is, suppression of HF tones results in a modulator free from undesirable baseband
artifacts. Fig. 28 shows simulation results obtained with the standard fourth-order modulator with various
amounts of RPD dither, where the HF idle tone at 1340 kHz (due to a dc input of 0.05) is eliminated with
the application of dither spanning ±1.0 .

(d)

(c)

(b)

(a)

Fig. 28. High-frequency idle-tone behaviour for various levels of dither in fourth-
order modulator with dc input of 0.05. RPD dither range is (a) 0, (b) ±0.5, (c)
±0.75, and (d) ±1.0.
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5 CHAOTIC SIGMA-DELTA MODULATORS

An alterative approach to using dither to eliminate low-level artifacts in sigma-delta converters is to make
the modulator chaotic, where noise-shaping zeros are moved outside the unit circle in the z-domain. Such
an approach is simply implemented by  appropriate choice of loop-filter coefficients, and has the
advantage over dithered sigma-delta modulators that no random-noise generator circuitry is required -
hence making the technique especially attractive for linearising sigma-delta ADCs.

An explanation of why chaotic SDM systems are likely to be less prone to idle tones and limit cycles was
recently provided by Schreier [18]. With reference to Fig. 3 and Eq. (2), a modulator with noise-shaping
zeros outside the unit circle is equivalent to the poles of the loop filter H(z) also being outside the unit
circle - that is, H(z) is open-loop unstable. Such a system exhibits extreme sensitivity to initial conditions
and small changes in the condition of the modulator, hence any repetitive pattern that would have
occurred at the output of a non-chaotic modulator (with noise-shaping zeros on the unit circle) will tend to
be broken up. The speed at which limit cycles are disrupted is determined by how unstable H(z) is - that
is, how far outside the unit circle the noise-shaping zeros are situated. However, although the output of a
chaotic system is generally non-periodic, with a continuous spectrum, Risbo points out in [21] that this
condition does not preclude the combination of tones and noise in the modulator quantisation error.
Indeed, Schreier's simulation results for first- and second-order modulators show that introduction of
chaos can reduce the amplitude of but not eliminate tonal quantisation components [11]. Similarly
Motamed et al. [31] note that although the possibility of quantisation noise with stable periodic
components is avoided in chaotic systems, tones may well be observed in short-term noise spectra (such
as a measurement over a finite number of samples). In this section we investigate how successful a
certain class of chaotic modulator is in eliminating tones and noise modulation in sigma-delta conversion.

With the restriction that at least one noise-shaping zero must lie outside the unit circle, Risbo [26] identifies
three classes of chaotic sigma-delta modulator:
• Take the loop filter H(z) for a standard sigma-delta modulator and scale the poles (that is, the noise-

shaping zeros) to positions outside the unit circle.
• Design NS(z) to be minimum phase and reflect zeros to reciprocal locations outside the unit circle.
• Design part of NS(z) with a lower order than the order of the modulator n and with zeros on the unit

circle, and arrange the remaining poles and zeros as allpass sections (with the allpass zeros outside
the unit circle).

In this study we focus on the first of these options, where all noise-shaping zeros are outside the unit
circle, and by the same amount. For example, Fig. 29 shows z-domain noise-shaping pole and zero
placement for a fourth-order chaotic modulator with poles in a Butterworth configuration and zeros with
radii rz = 1.05; zero frequencies are equal to the values found in an optimal zero configuration (Table 1).

Fig. 29. Noise-shaping pole/zero placement in z-domain
for chaotic fourth-order modulator with rz = 1.05.
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Hein [32] recently described a simulated comparison of a standard second-order modulator with a chaotic
system where all noise-shaping zeros were moved outside the unit circle in the z-plane. Introducing chaos
to the system was shown to break up an idle tone in the standard modulator caused by a dc input signal.
Fig. 13 shows the standard second-order SDM architecture, where integrator-pole (and hence loop-filter
pole, and also noise-shaping zero) locations are set by α and β. Noise-shaping zeros are moved outside
the unit circle by setting either or both α, β to be greater than unity. Consider Fig. 30, which shows time-
and frequency-domain plots of the standard (nonchaotic) second-order modulator output for a dc input of
1/128 (the oversampling factor was again set to 64). The periodic nature of the output signal is clearly
evident, with three tones present within the baseband. Both noise-shaping zeros were then moved
outside the unit circle by setting α = β = rz = 1.01, and the system resimulated for the same input signal.
The results shown in Fig. 31 indicate that the introduction of chaos has completely broken up any
periodicity in the modulator output signal, the frequency-domain representation of the output appearing as
random noise in the baseband. Although using a different oversampling factor and dc-input level, such a
result agrees with Hein's simulation results published in [32].

Fig. 30. AC component of output from non-chaotic second-order modulator with rz = 1.0
and dc input = 1/128. (a) Time domain. (b) Frequency domain.

Fig. 31. AC component of output signal from chaotic second-order modulator with rz =
1.01 and dc input = 1/128. (a) Time domain. (b) Frequency domain.

However, further simulations with different input signals indicate that this chaotic second-order system
does not completely break up all tonal components of the quantisation noise. Consider the baseband

(a) (b)

(a) (b)
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output spectra shown in Fig. 32(a) and Fig. 32(b), corresponding to the standard and chaotic modulators
respectively, for a dc input equal to 1/256. Although the introduction of chaos clearly makes the modulator
output spectrum less tonal, the amplitude of the fIT idle tone remains approximately unchanged.

Fig. 32. Output spectra of second-order modulators with dc input = 1/256.
(a) Non-chaotic modulator, rz = 1.0, and (b) chaotic modulator, rz = 1.01.

In an attempt to determine whether higher levels of chaos (that is, rz > 1.01) can completely remove idle-
tone artifacts, fourth-order modulators with noise-shaping poles arranged in a Butterworth configuration (fc
= fs/25) and zeros at various positions outside the unit circle were each simulated with a dc input equal to
1/256. Fig. 33 shows baseband output spectra for rz ranging between 1.0 and 1.07, where each plot has
been vertically offset to aid clarity. Relative to the level of the output noise floor, the amplitude of the fIT =
11 kHz idle-tone is reduced as the noise-shaping zeros move further outside the unit circle, until it is
eliminated in the upper plot for rz = 1.07. However, moving the noise-shaping zeros outside the unit circle
tends to reduce suppression of baseband quantisation noise, hence as well as reducing SNR the
introduction of chaos can have the surprising effect of increasing the absolute amplitude of baseband idle
tones [33]. For example, Fig. 34 compares baseband noise spectra for two fourth-order modulators - one
with noise-shaping zeros on the unit circle (rz = 1.0), and the other with chaotic zero placement (rz = 1.01).
It is clear that introducing chaos has suppressed the idle tone at 11 kHz relative to the noise floor, but
increased it in absolute terms. Fig. 35 shows a set of simulations for fourth-order modulators with a dc
input of 0.05, which show how the high-frequency idle tone at 1.34 MHz is affected by the degree of
chaos. The idle tone is almost eliminated in the upper plot where rz = 1.1.

These results suggest that chaotic sigma-delta modulators are not completely linearised until the noise-
shaping zero radii are well outside the unit circle, rz > 1.05, a finding which agrees with Risbo's study of
sixth-order chaotic modulators [26]. In order to determine SNR penalties associated with such high levels
of chaos, an extensive series of simulations was performed on modulators with orders ranging from 1 to 5,
with rz ranging from 1.0005 to 1.15, where the degree of chaos (rz-1) was incremented in approximate
steps of 1 dB. The noise-shaping poles of each modulator were, as for the dither simulations, arranged in
a Butterworth configuration, while noise-shaping zero frequencies were set to their optimal values (Table
2). Several workers, including Motamed et al. [31] and Risbo [21], have noted that, as for the introduction
of dither, implementing chaos tends to deteriorate the stability of sigma-delta modulators. Such behaviour
is confirmed in Fig. 36 where a chaotic system with rz = 1.05 becomes unstable for lower dc input
amplitudes than a nonchaotic system with the same noise-shaping pole locations. Hence for each chaotic
system investigated, the Butterworth cutoff frequency fc was optimised using the procedure outlined in
Sec. 2 to yield the maximum-possible SNR. The peak SNR obtained from each chaotic modulator was
then compared against that available from the optimal non-chaotic modulator of the same order; SNR
penalties associated with minimum chaos levels required for linearisation are collated in Table 4.

(a) (b)
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Fig. 34. Fourth-order modulators with dc input = 1/256. (a) Non
chaotic, rz = 1. (b) rz = 1.01, indicating how moderate degree of
chaos can increase absolute idle-tone amplitude.

(d)

(c)

(b)

(a)

Fig. 33. Effect of noise-shaping zero locations on baseband idle tones in chaotic fourth-
order SDM with dc input = 1/256. Modulator output spectra for zero radii rz = (a) 1.0, (b)
1.002, (c) 1.035, and (d) 1.07.

(b)

(a)

(d)

(c)

(b)

(a)

Fig. 35. Effect of noise-shaping zero locations on high-frequency idle tones in chaotic fourth-order SDM
with dc input = 0.05. Modulator output spectra for zero radii rz = (a) 1.0, (b) 1.025, (c) 1.05, and (d) 1.1.
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   (b)      (a)

Fig. 36. Maximum quantiser input amplitude as function of dc input
amplitude for fourth-order modulators. (a) Bold trace: standard non-
chaotic modulator. (b) Thin trace: chaotic modulator, rz = 1.05.

These results indicate that, while chaos can reduce the tonal nature of sigma-delta modulation, the
technique struggles to completely linearise modulators, and in comparison to dithered modulators is
expensive in terms of SNR reduction. This study has focused upon a class of chaotic modulator where
noise-shaping zeros have positions in the z-domain which are simply scaled from non-chaotic noise-
shaping functions. Risbo describes in [26] how chaotic modulators with allpass-sections reduce idle tones
and noise modulation with a smaller dynamic-range penalty than scaled-zero chaotic systems, especially
if the allpass zeros are close to fs/2 (where they tend to suppress high-frequency idle tones). However,
further results presented by the authors in [34] suggest that, although more efficient at linearisation than
scaled-zero systems for higher-order modulators, chaotic SDMs with allpass-sections are also less
efficient at removing low-level artifacts than dither.

6 CONCLUSIONS

In this paper we have compared the cost in terms of dynamic range for two techniques - dither and chaos
- that have been proposed as methods for linearising sigma-delta modulators. In Sec. 1 we discussed the
characteristics required of an "ideal" conversion process, where no distortion tones appear in the
converter output, and the noise floor of the converter is invariant with changes in the input signal. The
error associated with such an ideal conversion is psychoacoustically benign. Ideal TPD-dithered PCM
quantisers meet the conditions of an ideal conversion, but at the expense of a reduction in signal-to-noise
ratio of 4.8 dB compared to the undithered case. However, practical PCM converters with finite
component tolerances suffer from noise modulation and distortion. Conversely, sigma-delta modulators
are extremely tolerant of component mismatches, but inherently suffer from noise modulation and idle
tones. A study of tone artifacts in SDMs, using 3D plots of spectra obtained with dc-input fades and noise-
modulation plots with sinusoidal stimuli, indicated that even high-order systems suffer from these

Table 4.Reduction in SNR for chaotic SDMs.

Order
n

Noise-shaping
zero radii,  rz

SNR reduction compared to
non-chaotic modulator (dB)

2 1.15 36.5

3 1.1 43.5

4 1.089 65.7

5 1.056 60.7
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unwanted errors. It can be shown that idle-tone frequencies are related to the dc-input amplitude applied
to the modulator, and that noise modulation in SDMs is intimately related to the presence of idle tones.
Three options for eliminating idle tones in SDMs were considered - multibit quantisers, dither, and chaos.
The first of these options was rejected on the grounds that multibit quantisers increase modulator
complexity, and either suffer from the effects of finite component tolerancing or exhibit high sensitivity to
clock jitter.

Since the introduction of either dither or chaos can be shown to compromise the stability of sigma-delta
modulators, a valid study of the consequences of implementing either technique requires that all
modulators compared should have loop filters individually optimised for maximum signal-to-noise ratio. An
optimisation process was described in Sec. 2, which involves determining the maximum stable input
amplitude for a modulator with noise shaping poles arranged in a Butterworth configuration. Excepting the
chaotic modulators, all noise-shaping zeros were set to the optimal locations determined by Schreier [11].
In each case a pattern-search technique was used to find the Butterworth cutoff frequency which yielded
maximum signal-to-noise ratio.

In Sec. 4 we showed that dither of sufficient amplitude can completely linearise sigma-delta modulation.
The simulation results further indicate that, as well as linearising the baseband quantisation error, dither
also eliminates high-frequency tones which can be detrimental to the performance of practical systems.
Comparisons of optimised dithered and undithered systems indicated that the dither power required for
linearisation tends to reduce as the order of the modulator increases, although the dynamic range penalty
for dithering remains approximately constant with n at 4 to 5 dB. Simulations with various dither amplitude
distributions suggest that, compared to TPD dither, RPD dither achieves linearisation at marginally-lower
SNR cost. No significant performance differences were noted between TPD and HPTPD dither signals.
For higher-order systems, linearisation can be achieved with single-bit (BPD) dither at no additional SNR
expense compared to RPD dither, and such dither signals can easily be implemented in sigma-delta
ADCs.

Finally, characteristics of chaotic sigma-delta modulators were studied. Although there exist several
classes of chaotic systems, this study was confined to systems with zero locations scaled from their
optimal (non-chaotic) locations to lie outside the unit circle. While chaos precludes the possibility of purely
periodic output sequences, combinations of tones and noise can occur when the degree of chaos is
moderate (rz ≅  1.01). For all modulator orders relatively high degrees of chaos (rz > 1.05) were found
necessary to completely eliminate idle tones and noise modulation, although the reduction in SNR
associated with implementing chaos is then high - for example, 66 dB in the case of the fourth-order
modulator. The use of chaos thus appears far less efficient than dither at linearising sigma-delta
modulators.
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